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Predicting the Effects of Surface Suction
and Blowing on the Strouhal Frequencies
in Vortex Shedding

Ruben D. COHEN

Through the use of scaling arguments, a simple model describing the boundary
layer behavior during vortex shedding is proposed. The main focus of the model, which
is based on the assumption that the viscous diffusion length is directly proportional to
the boundary layer thickness, is set towards predicting the salient features, but not the
details, of the periodic flow. Promising results have been achieved upon applying the
model to the classical problem of vortex shedding over a solid circular cylinder. It is
noted, however, that there is a need for futher scrutiny in terms of a detailed compari-
son of the predicted results with existing numerical data. The model has also been
applied towards investigating the behavior of the vortex shedding or Strouhal fre-
quencies as influenced by boundary layer suction and injection (blowing) occurring
normal to the stream. Among the interesting findings dealing with this part of the
study, a critical Reynolds number is predicted which acts as the transition from one

limiting frequency behavior to another.
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1. Introduction and Overview

The behavior of unsteady flow over solid bodies is
a subject of active research emphasizing on fluid-
structure interactions in aero-and hydrodynamics.
The existing literature related to this topic is quite
extensive, and therefore presenting an in-depth
description here is found to be unnecessary. For con-
venience, however, a brief overview of some of the
important and well known characteristics associated
with vortex shedding over bluff bodies is included in
the following paragraphs obtained from Rothberg”.

For an isolated and stationary solid circular cylin-
der being subjected to low Reynolds number flow
(based on the cylinder diameter), a symmetrical
streamline pattern about the body with no flow sepa-
ration is established. Onset of separation begins at a
Reynolds number of 5 to 6 after which instabilities
caused by the amplification of Tollmien-Schlichting
waves? start to develop at a Reynolds number of
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about 40. These, ultimately, cause vortices to shed in
a periodic manner over the surface of the body. An
interesting observation made by Gerrard® is that
when the shear layers are brought closer together
(i. e. thinner boundary layers), as would occur with
the motion of the separation points towards each
other, the frequency of vortex shedding is increased.

The flow about the cylinder and throughout the
wake remains laminar up to a Reynolds number of
approximately 150, after which a transition to turbu-
lence in the wake begins to develop. As the Reynolds
number increases beyond this value, the transition to
turbulence in the wake continues to grow and moves
further upstream toward the cylinder boundary layer.
The flow regime ranging from the onset of wake
turbulence to the transition to turbulence in the cylin-
der boundary layer is known as the subcritical range.
Critical flow occurs at approximately Res=3Xx10°
This is accompanied by a large reduction in the drag
coefficient as the separation points move rearward on
the cylinder. Flows between the critical value and a
Reynolds number of approximately 3.5X10° show no
organized pattern in the wake, and vortex shedding is
not present. Depending on the reference, flows at Req
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greater than 3Xx10° are called either supercritical or
transcritical. Re-establishment of vortex shedding is
observed at Reynolds numbers exceeding 3.5 X 10°%
Fig. 1 summarizes the results discussed above. Here
the Strouhal number, S¢, which is defined by

St=fd/U» (1-a)
where f is the frequency of shedding, 4 being the
cylinder diameter, and U. representing the free
stream velocity, is plotted against Reynolds number,
Req, where

Rea=Uxdfv (1+b)
(v is the kinematic viscosity of the fluid). A more
detailed analysis of the characteristic features obser-
ved here are discussed in a later section of this paper.

It is now important to focus briefly on the
analytical investigations of these problems that began
in the form of stability analysis of vortex streets®,
and have, over a period of many years, been extended
to detailed numerical simulations of the unsteady flow
fields over cylindrical bodies (1 and 6 among a great
many others). In reference to the many numerical
investigations conducted throughout the past few
years, it is notable that rather superb agreements with
the experimental observations discussed above have
been achieved.

In many instances, especially where practical
engineering designs are involved, it is somewhat desir-
able to bypass the use of extensive computations and
instead rely on scaling parameters for characterizing
the prominent features often associated with the
specific problem of interest. With this in mind, a
simple model with the sole purpose of establishing a
means for quick predictions of certain aspects of
vortex shedding over bluff bodies is proposed here.
Being principally based on scaling arguments and on a
relatively simple assumption relating the viscous
diffusion length and the boundary layer thickness, the
model aims at providing a straightforward technique
for seeking the important dimensionless parameters
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Fig. 1 Characteristic features of the Strouhal number
versus Reynolds number for flow over a circular
cylinder (from Ref. (4 ), with permission).
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that may prove valuable for modeling and design
purposes.

2. Analysis of the St-Res Relationship

Referring back to Fig.1 and to the discussions
preceding it, one may subdivide the resuits into the
following 4 catagories:

I 40<Req<150

laminar boundary layer & wake
II 150< Res<3X%x10°

laminar boundary layer, turbulent wake (2-b)
O 3X10°< Res<3.5X%10°

no observed vortex shedding
IV Res>35x10°

vortex shedding, turbulent wake & boundary

layer (2+d)
Furthermore, we choose to characterize the St-Req
plot by the following power law relation :

St~ Rej (3)
where the value of the power coefficient 8 varies with
the different regimes of Reu defined in Egs. (2 ). Using
the results of Fig.1 and from other more detailed
graphical data (i. e. Fig.2. 9 in Ref. (7)), it can be
shown that

(2+a)

(2+c)

B=02 Region 1 (4-a)
B=0 Region II (4+b)
£=0.1 Region IV (4+¢)

which interestingly suggest that the Strouhal number
is overall very weakly dependent on the Reynolds
number within the ranges investigated. Although not
generally presented in the form given by Egs. ( 3) and
(4), this conclusion is very much recognized and well
accepted among the fluid dynamics community.

With this rather peculiar result in mind, we shall
now proceed to develop a simple model which incorpo-
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Fig. 2 Time dependent behavior of the frictional drag
coefficient for flow at Re.=100 over a circular
cylinder (from Ref. (6), with permission).
Here, frictional drag is calculated by integrating
the numerically obtained wall shear stress from
the forward stagnation (#=r) to the point of
separation along the upper boundary layer.
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rates the conservation principles of mass and momen-
tum to describe the boundary layer behavior during
vortex shedding. The ultimate goal for the model is, of
course, to predict this quasi-independent characteris-
tic of the Strouhal number. Once this is achieved, then
applications to a wider range of problems can be
made. These would include, for example, predictions
of the behavior of vortex shedding frequencies over
porous bluff bodies with suction and injection occur-
ring on the surface, normal to the flow.

It is now important to stress the fact that the
phenomenon of vortex shedding, particularly in the
presence of boundary layer suction and blowing, is an
extremely complex one whose details can be inves-
tigated only by rigorous numerical or experimental
techniques. The very simple model which follows in
the next section should by no means be viewed as an
attempt to establish the exact behaviors. Rather, it
should just be considered as an order of magnitude
approach set towards determining on/ly the character-
istic behaviors of the Strouhal frequencies in the
certain asymptotic limits to be discussed shortly.

3. Model Development

This work is divided into two parts. Part [ 1]
deals with vortex shedding over impermeable cylin-
ders, and part [2] accounts for the influence of
boundary layer suction and blowing on the Strouhal
frequencies.

[1] Vortex shedding over an impermeablecylin-
der : Although derivation of the model for the imper-
meable cylinder is readily availabe in existing litera
ture®, a brief review is included here for convenience
to the reader.

It is known that thin boundary layers over solid
bodies are generally characteristic of high Reynolds
number flows. Additionally, in the presence of an
adverse pressure gradient, flow separation and vortex
formation inevitably occurs. With the free stream
usually being irrotational and the wake, rotational, by
Helmholtz’s theorem we can conclude that the vor-
ticity contained in the wake must originate from
within the boundary layer.

We now propose that in the presence of vortex
shedding, the primary mechanism of vorticity trans-
port from boundary layer to the wake is due to vortex
shedding. Hence, upon detachment and shedding, the
vortex, having been formed in the separated region of
the flow in the boundary layer, shall carry with it part
of the boundary layer, and consequently its character-
istics, and move downstream at a speed approximate-
ly equal to the free stream yelocity, U, to eventually
form the wake. This mechanism will therefore lead to
a partial removal of the boundary layer, hence causing
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its periodic collapse and regrowth. Evidence of this is
presented by the periodic oscillation of the frictional
drag along the surface of the cylinder, as illustrated in
Fig. 2 for Res=100. Here, drag is calculated by inte-
grating the numerically obtained wall shear stress
from the forward stagnation (§=r) to the point of
separation along the upper boundary layer®. Further
proof is provided after observing that the natural
shedding of vortices also induces small increases of
the heat transfer rate in the attached flow region®.

The approach towards developing the model
mainly involves the assumption that the viscous
diffusion length is directly proportional to the bound-
ary layer thickness. We shall now investigate the
implications of this hypothesis by applying scaling
arguments to analyze the incompressible Navier-
Stokes Equation. In reference to Fig. 3, we refer to the
8 or azimuthal component of the polar Navier-Stokes
Equation given below :

Ou  udu  ou u_ 1 3

ot " r a8 Yor Uy~ or 90
Fu 1 ou u, 1 Fu, 2 dv
B A e ]
(5)

where u and v, respectively, denote the tangential and
the normal velocity components, and p is the local
pressure. Considering very thin boundary layers, i. e.
d/R <1 with ¢ being the characteristic boundary layer
thickness over the body, Eq. (5) simplifies to the well
known wunsteady boundary layer equation given by :

du | u ou va_u= U(g) aU(8) iy Fu

ot ' r 90 or 7 FT or?

(6)
where U(9) is the free stream velocity at the edge of
)

cylinder

boundary
layer

Fig. 3 Schematic of flow and vortex shedding over a
circular cylinder (from Ref. (8), with permis-
sion).
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the boundary layer. Eq. (6) results after realizing
that for boundary layers

%‘? =0 (7-a)
so that

1 9 _ U aU(8 (7+b)

or af e 26

Eq. (7+b) is simply the §-direction pressure gradient
obtainable from the inviscid flow relationship, depend-
ing on the shape of the solid body. Order of magnitude
scaling of Eq. (6) gives

2 2

S SN R (8)
where R is the characteristic size of the body (i. e. R
=d/2 for a circular cylinder of diameter &), and K is
a dimensionless constant of order unity implemented
to distinguish between the convective acceleration and
the pressure terms appearing, respectively, on the left
hand side and right hand side of Eq. (6).

At this point we shall investigate the consequence
of our assumption that the governing mechanism of
vortex shedding is the periodic formation, detach-
ment, and removal of part of the boundary layer,
along with the vortex. This, therefore, implies that the
boundary layer thickness, &, is periodically dependent
on time, i. e.

o~ 8(t) (9)
where 0<¢<r, r<¢<2r, etc. with r being the period
of shedding.

As a result of the somewhat sudden removal and
the subsequent partial collapse of the viscous bound-
ary layer at the time of shedding, & becomes small
enough for the viscous term in Eq. (8) to dominate
over the convective term, U?/R. Hence

yUs (10)

2”7 R
which implies that corresponding to time #/r<1, the
following will govern :

%‘t‘ x V‘@z_uz‘ (11)

+v

In other words, immediately after detachment of the
vortex and the subsequent collapse of the boundary
layer, its growth begins by the process of viscous
diffusion characterized by Eq. (11). This diffusive
growth continues until, more or less, a time of the
order of magnitude given by the period of shedding, r
At this time when the vortex has almost grown to its
maximum and steady size and ready to detach,
convective acceleration will begin to prevail over the
unsteady term. This suggests that

ou . U?
7<<— (12)
at t/r~1. As a result of this, Eq. (6) reduces to
u Ju U(f)) 8U(6’)
o +v » (13)
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which is the steady state boundary layer equation-
assumed to be reached at time ¢~ 7.
Based on classical scaling arguments, it follows
from Egs. (11) and (13), respectively, that
S(H)~Vvt  for 0<t<r (14)
and

VR

o(t)~ U when t~t (15)

It should be mentioned that all numerical constants
have been excluded up to this point so that we can
focus primarily on providing the important character-
istic or asymptotic behaviors and the scaling par-
ameters involved. Finally, we expect Eqgs. (14) and
(15) to approach one another in their orders of
magnitude at time t=r, 7. e.

\/u_r~‘/% (16)

Thus, by virtue of this argument, we get

R
T’\'? (17)

after solving for the shedding period, r. But within a
constant, Eq. (17) can be re-written in terms of the
cylinder diameter, d, free stream velocity, U=, and the
shedding frequency, / (where f=1/7), i. e.

1 d
UL (18)
Now, upon defining the dimensionless Strouhal num-

ber, St, by

St_—fi (19)
we find that our proposed model leads to
St ~ constant (20)

by means of Eq. (18). This result simply states that
the Strouhal number is a constant, independent of the
Reynolds number, which, surprisingly, is quite in satis-
factory agreement with experimentally obtained St-
Reu relationships for various body shapes; an exam-
ple of one being represented in Fig. 4 obtained from
Ref. (7). We find it important to point out that since
the model is based on the application of Navier-
Stokes Equation to the boundary layer only, it is
expected to be valid so long as the boundary layer, but
not necessarily the wake, remains laminar. Also
notable is that, in reality, slight dependencies, such as
those given by Egs. (3) and (4) for the case of a
circular cylinder of the Strouhal on the Reynolds
number, do tend to exist. With relation to our model,
however, this discrepancy appears to be reasonably
small, especially after considering our extremely sim-
plistic approach to the problem. Altogether, we con-
clude that the model does provide us with a physical
view that is seemingly consistent with exgerimental
data.
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Fig. 4 Strouhal voersus Reynolds number for the vor-

tex street behind a flat plate at zero incidence
(from Ref. (7), with permission).

[2] Effect of Normal Surface Suction & In-
jection on the St-Res Relationship
In the sections that follow, we use the proposed
physical model in an attempt to predict the character-
istic behavior of the St-Req relationship during vor-
tex sheddng. Fig. 5 shows a typical body, in this case
being a cylinder of diameter d, being subjected to flow
approaching with free stream velocity Us, and having
fluid properties o and u. Here, the cylinder is assumed
to be porous, with fluid being sucked in or injected out
with uniform velocity (suction or injection flow rate
per unit surface area), w, normal to the surface.
The character of the steady state boundary layer,
8, as affected by suction and injection, is schemati-
cally illustrated for the flat plate configuration in Fig.
6. For simplicity, we use the flat plate here with the
realization that the asymptotic, but not exact, behav-
iors can be extended to other geometries, such as
circular cylinders. Using the simple Von Karman
momentum integral approach, we can demonstrate
that near the leading edge both curves (suction and
injection) asymptotically approach the Blasius behav-
ior characterizd by 8~ vL/U», with L being the
characteristic plate length. Further downstream, how-
ever, the curves approach their specific characteriscs
of §~wvL/U- and 8~ vfve, for normal injection and
suction, respectively. For other porous surfaces where
streamwise pressure gradients are not zero, these
behaviors can still be shown to be directly analogous
to the above from an order of magnitude analysis of
the boundary layer equation given by Eq. (6). In this
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Fig. 5 Schematic of flow and vortex shedding over a
circular cylinder with surface suction (—wo) or
surface injection (4 o).

(mmn injection

(Il solid surface
(Blasius)
(1) suction

Flat plate

Fig. 6 Characteristic behaviors of the boundary layers
formed in the presence of surface suction (curve
1), surface injection (curve III), and imperme-
able surface (curve II).

situation, we must take the velocity boundary condi-
tion on the surface as

[ V]surface= * ;rUO (21)
(where+and—, respectively, denote injection and suc-
tion) instead of the zero used for the impermeable
circular cylinder problem. As a result, applying sc-
aling arguments to Eq. (6) yields

2 2
%—';+K—%+ vo%~ ({; +u%;’— (22)
The difference between Eq. ( 8) (for an impermeable
surface) and Eq. (22) is that the latter accounts for
the effect of normal suction and injection.

In reference to the above equation, we shall now
derive the characteristics of the boundary layer thick-
ness at steady state, i. e. du/ot=0. This result is neces-
sary for later utilization in model development.

(i) Suction-Considering suction normal to the sur-
face, we realize that there basically exist (2 ) distinc-
tive boundary layer structures, as shown in Fig. 6. The
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initial portion is the “Blasius” type (i. e. “Blasius”
type boundary layer is used in reference to steady
boundary layers over impermeable objects) which
occurs near the leading edge where the effect of
suction is not yet felt by the flow. The influence of
suction, however, begins to show further downstream
where, as will be shown later, the boundary layer
thickness approaches a constant value over the
remainder of the plate.

Returning to near the leading edge where the
Blasius structure dominates, this essentially occurs
when

2
wi e (23)
or simply
g"(ji <1 (24)

corresponding to when the effect of suction is negli-
gible. Hence, it obviously follows that under the con-
dition dictated by Eq. (24), we get the “Blasius” type
given by

%~ i (25)
just as in Eq. (15).

In the other extreme of Eq. (24) we have the
boundary layer structure as affected by normal suc-
tion (constant &)

Uod
SUL >1 (26)

which, from Eq. (22) at steady state, leads to

vogm ~ Véjzm (27)
or simply

v

é 2 (28)
thereby proving that the characteristic thickness of
the boundary layer, in the presence of strong surface
suction, approaches a constant value along the down-
stream section of the body. Substitution of the above
in Eq. (26), therefore, yields the condition for which
Eq. (28) maintains its validity. Hence,

2 vsd
é ” when A >1 (29)
Upon defining Re* as
Re*=wndfy (30)
we re-write Eq. (29) as
*2
%~%ﬁ when Ifeeed >1 (31)

Now, in accordance with our shedding model, we
follow the assumptions presented in Eq. (14) to write

3 _Jvr
rhaws (32)

where once again r denotes the shedding period, which
is just the time scale needed for the boundary layer to
achieve its steady state value (Eq. (29) for the case of
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suction). Equating Egs. (31) and (32) and solving for
7 yields
2
In terms of the more useful Strouhal number, the
above reduces to
*2 *2

[St]sucuon E% "’% ??eed
where f is just r7'. The above implies that St
increases with increasing rate of suction.

(ii ) Blowing-We refer again to Eq. (22) at steady
state for analyzing the boundary layer character as
affected by blowing normal to the surface. Once more,
the boundary layer possesses 2 distinctive behaviors.
One being the Blasius type manifested in Eq. (25),
which results near the leading edge where the effects
of blowing are insignificant, i. e. when Eq. (24) is
satisfied. Far from the leading edge, however, struc-
tural transition occurs owing to the fact that in this
region, due to continuous surface blowing with arbi-
trary rate of v, the boundary layer thickness growns
linearly and eventually becomes large enough to ren-
der

when >1 (34)

o (35)
or
%>># (36)

simply because the RHS of Eq. (35) decays with 872
while the LHS is proportional to . Thus for normal
injection, we obtain the steady state behavior of &
through the relationship

2
%h——”"g]“ (37)

obtainable from Eq. (22) for du/ot=0 and the condi-
tion of Eq. (35). The above implies that the inertial
terms have the same orders of magnitude. Eq. (37) is
simplified to yield

0 v
P REIA (38)

which is the steady state characteristic of the bound-
ary layer thickness as affected by injection. The-
structure of Eq. (38) can be easily verified by applying
the von Karman momentum integral on a boundary
layer with injection, after satifying the criterion given
by Eq. (26), i. e. far from the leading edge where
Blasius is no longer valid.

With 6/d available from the above, the condition
of Eq. (36) becomes

Re*?
Re >1 (39)
so that for normal surface injection
*2
d__ Re >1 (40)

2 U when Rea
Again, according to a previous argument regarding
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the transient behavior of 8(i. e. 8(r)~Vvr), we get
for injection

*2
‘/’é_ ~4-  when ’;eed >1 (41)

d*vé
VU
after solving for r. Finally, in terms of the Strouhal
frequency, we obtain

T

*2
[ St ]lnjecllon = {J—d ~ %{ when RReed >1
(42)

to represent our predicted asymptotic St-Re. rela-
tionship in the presence of injection. Eq. (42) suggests
that normal injection decreases the Strouhal fre-
quency.

4. Analysis of Results

In the previous sections, we investigated the
influence of surface suction and injection on the
Strouhal frequency. For convenience, these results
have been put together below :

Re*? Re*?
[ St ]szcuon R_ed when Red >1 (34)
*2

[ St]mjectlon ~ ‘% When Il??eed >> 1 (42)

*2
[St ]sucuon&ln,lecuon ~constant when %<< 1

€dq

(43)

The behaviors of the equations provided above can be
best visualized through the log-log plot of St versus
Rey portrayed in Fig. 7.

An interesting observation readily deducted from
this plot is that the Strouhal numbers corresponding
to normal surface suction and injection are, respec-
tively, greater and smaller than those associated with
the impermeable cylinder (i. e. Re*=0). In other
words, suction which acts to reduce the overall thick-
ness of the boundary layer, tends to increase the

Re*<0 (suction)

Log St

Re*=0

Re*>0 (injection)

Log Rey

Fig. 7 Prediction of St versus Res as affected by nor-
mal suction and injection at different values of
Re*.
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shedding frequency above that of flow over the imper-
meable body, and vice versa. This finding, at least for
the time being, seems to be consistent with Gerrard®
who observed that thinner shear (boundary) layers
lead to higher shedding fsequencies. We also note
from Fig.7 that the slopes obtained from the log
(St) versus log (Res) curves acquire values of +1 for
injection and —1 for suction.

It is now worth commenting about the influence
that suction may have on delaying, and even suppress-
ing, the onset of flow separation in the boundary layer.
This well known effect would, therefore, render our
predicted asymptotic limit (slope of —1 in the log
(St) versus log (Res) plot) in vortex shedding with
normal suction very difficult, if not impossible, to
achieve. The question of whether or not this can be
reached is, at this point, left to be answered by thor-
ough analytical and/or experimental investigations.
Nevertheless, we do note that, at least, this predicted
asymptote for suction dominated flows provides an
upper bounds that may prove useful in practical
design applications.

Another characteristic feature worth noting is
that in the limit Re*?/Res>1, the impacts of suction
and injection appear to be most visible, while as
Re*?/Res becomes small, they lose all their effects,
and the St-Res curve approaches that of shedding
over a solid impermeable body. This basically sug-
gests that in the vicinity of

Re*Z

Req ~
there is a transition from one asymtpotic behavior
(shedding in the presence of suction or blowing) to the
other (shedding over an impermeable surface). This is
exemplified in Fig. 8 for suction at a specific value of
Re*. It therefore follows that we can define a critical
Reynolds number, [ Red]criucai, by letting

Re*< 0 (Suction)

-1

Log St

2
Rey << Re*

Fig. 8 St versus Res for normal suction at a specific
value of Re*. Important features are the
asymptotic behaviors at Res< Re** and Res>»
Re*? (heavy solid lines), and the transitional
region at Re,= Re**.
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which suggests that if we operate at
Res<[Realericar (45)

then the effects of suction and injection, conveniently
characterized by Re*, gain importance and, therefore,
must be accounted for. Otherwise, when operating at

Red > [Red]crmcm (46)
then these effects can be neglected, and the body
considered to be impermeable.

5. Conclusions

A simple model based on a hypothesis concerning
the behavior of the boundary layer during vortex
shedding is presented. Upon applying the model, which
is derived using scaling arguments, to an impermeable
stationary body such as the classical case of the
circular cylinder, we satisfactorily predict the quasi-
constant characteristics of the Strouhal frequency.
Extending the model to account for the possibility of
vortex shedding in the presence of surface suction and
injection occurring normal to the surface leads to the
results outlined below :

(i) Prediction of a critical Reynolds number,
denoted here by [ Res]criuear, Which is found to be equal
to Re*? (Figs.7 and 8). This appears to serve as the
transition from one characteristic asymptotic behav-
ior to another. In other words, the effects of suction
and injection are most visible when operating the
system below this critical Reynolds number, whereas,
they are lost when operating at Reynolds numbers
higher than [ Rea)criicar.

(ii) When operating below [Rea]erincar, suction
tends to increase the Strouhal frequency while injec-
tion decreases it.

(iii) On a log-log plot of St versus Reu, at Reu’s
below the critical value, a/l curves have slopes that
asymptotically approach +1, where (+) and (-),
respectively, correspond to injection and suction.
Moreover, these asymptotic slopes appear to be in-
dependent of Re*.

(iv) Finally, in reference to Eqgs. (34), (42), and
(43), and also from Figs. 7 and 8, we conclude that it
may be more appropriate to graphically portray the
effects of Reynolds number on the Strouhal number as
St versus Re*?/Req, rather than St versus Req. This is
more attractive because if we choose the independent
parameter to be Re*?/Re, instead of Re., we can unify
all the curves of Fig.7, corresponding to different
values of Re* (including the impermeable case of Re*
=0), at least in the asymptotic limits of Re*?/Res<1
and >1 as illustrated in Fig. 9. By doing so, however,
we lose all the intricate details that are embedded in
the St-Req curve (i. e. Figs. 1 and 4) since only the
(almost) constant or overall average value of the
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Strouhal number is incorporated to represent the
impermeable case given by Re*?/Res=0 (e.g.5t=0.21
and 0.19, respectively, for the impermeable circular
cylinder and the finite flat-shaped body shown in Fig.
4). It is also worth noting that these “average” Strou-
hal numbers are not significantly different for a wide
variety of body shapes?.

Since at this time we are not aware of any experi-
mental or numerical works dealing directly with the
indicated problem, the validity of the results of Fig. 9
remains to be tested by further investigations. In
connection with this, however, reference is made to
Bearman’s experiments'” on the effects of base bleed
on vortex shedding frequencies. A conclusion of
that work is that the Strouhal frequency first rises and
then falls with increasing injection rates at the base.
Altogether, the effects of base bleed on the Strouhal
number seem to be insignificant, as concluded also
by Wood "®. From the configuration of the body
involved in the abovementioned studies, however, we
note that the boundary layer region is not subjected to
any normal blowing. This, therfore, indicates that the
nature of the problem considered in Refs. (11) and
(12) is quite different from the one examined here,
and thus the results obtained there could not be
compared with those predicted here.

In addition, we note that a number of investiga-
tions concerning high Reynolds number flow on porous
plates, as illustrated schematically in Fig. 10, have
been conducted"®®®, In reference to these works
which were carried out on plates of varying porosities,
we note that they are somewhat related to the case of
boundary layer suction since the leakage through the
porous plate could very well represent an effective
rate of suction. Here, it is interesting to observe that
increasing the plate porosity, and thereby the suction

1\
Suction
- +1
0 d
3 T
: Injection
6 >
Log (Re**/Re,)

Fig. 9 St versus Re**/Res emphasizing the unification
of all curves obtained at different rates of nor-
mal suction and injection.
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Fig. 10 Shematic diagram of high Reynolds number

flow incident on a porous plate.

rate, leads to an increase in the Strouhal frequency ; a
result which, qualitatively, is in good agreement with
the predictions of the proposed model.

Finally, as mentioned earlier, we find it important
to emphasize strongly that the model is obviously not
an exact analysis, but is only proposed to provide a
rather simplistic approach to predicting the effects of
normal surface suction and blowing on the asymptotic
limits of vortex shedding frequencies.

(1)

(2)

(3)
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