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A VaR-based Model for 
the Yield Curve*

Among other features of the model are that it is able to explain, qualitatively if
not quantitatively, the existence of (1) a normal yield curve at times of “normal eco-
nomic growth”, (2) an inverted curve during periods of “high uncertainty”, “high in-
terest rates” or “low economic growth”,1 (3) a flat yield curve in more certain times
and (4) a liquidity trap when economic growth is expected to be negative.

Abstract
An intuitive model for the yield curve, based on the notion of value-at-risk, is present-
ed. It leads to interest rates that hedge against potential losses incurred from holding
an underlying risky security until maturity. This result is also shown to tie in directly
with the Capital Asset Pricing Model via the Sharpe Ratio. The conclusion here is that
the normal yield curve can be characterised by a constant Sharpe Ratio, non-dimen-
sionalised with respect to 

√
T, where T is the bond maturity. 

1. Introduction
The yield curve, which is a graphical depiction of interest rates plotted
against the maturities of the underlying fixed income instrument—most
commonly treasury bonds—constitutes an important area of economics
and finance, and its determination has proven to be one of the most
challenging endeavours undertaken in both theoretical and practical re-
search. Constructing original framework models to predict these curves
lies at the forefront of activities in every major financial institution, as
any successful trading strategy that originates from these is guaranteed
to generate vast amounts of profits.

Although interest in the shape of yield curves began as early as 1913
with work on the business cycle (Mitchell, 1913), it was Kessel (1965) who
first focused specifically on the behaviour of the term spreads. Since then,
work, both theoretical and empirical, has advanced to cover the use of term
spreads to forecast the economy, as it was always recognised that the yield
curve is not only affected by economic policies and shocks (Evans &
Marshall, 2001) but that it could also serve as a leading indicator for a vari-
ety of economic parameters, including changes in GDP, GNP, consumption,
investment, etc. (Diebold et al, 2005; Ang et al, 2006; among others).

Bearing in mind the above, as well as other criteria [such as the real
rate, inflation premium and interest rate risk premium] that go into
forming the yield curve and many of which are widely discussed in the
literature [see, for example, Esterella (2005) for a literature review], it is
accepted that two independent schools of thought lie behind what shapes
the curve. These are the (aa) market segmentation hypothesis and (bb) ex-
pectations hypothesis (Fabozzi, 1996 & 1999). Whereas in the former the

shape of the yield curve is determined by the supply and demand for se-
curities within each maturity sector, assuming that neither investors
nor borrowers are willing to shift from one maturity sector to another,
in the latter, broadly speaking, it is presumed that the underlying for-
ward rates signal the market’s expectations of future actual rates. 

These two hypotheses together lead to the following three attributes,
namely (ii) interest rates for different maturities move together in time,
(iiii) yield curves tend to slope upward when short rates are low and down-
ward when short rates are high and, finally, (iiiiii) yield curves are typical-
ly upward sloping. However, since the expectations hypothesis explains
only points ii and iiii above and segmentation only iiiiii, a combined theory,
being the liquidity premium, was later put in place to account for all
three observations. In summary, this theory states that investors prefer to
hold shorter bonds to long, owing to a liquidity premium that increases
with maturity. This rather subjective characterisation leads to the third
behaviour that yield curves are typically upward sloping.

While the preceding paragraphs collectively reflect the quasi-static or
quasi-equilibrium nature of yield curves and ignore their time-dependent
movements, a whole new quantitative area, emphasising specifically on
the dynamics, has developed within the past 2 to 3 decades. This field,
which has attracted great attention from theoreticians and practitioners
alike, centres on the time-dependent stochastic nature of the yield curve
and has found its niche in the pricing of fixed-income instruments in a
dynamic setting. As this area is out of the scope of this work, we shall not
delve into it any further and, instead, refer the interested reader to some
background literature, including, among many others, Brace et al (1997),
Benninga & Wiener (1998) and references therein.
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one limit the VaR levels to ±1σ and not another value? Purely for conven-
ience, as any other specification would produce a consistent outcome. 

The bounds of ±1σ are also shown, moving at rt + σ
√

t and rt − σ
√

t,
respectively, and yield values, b1 and b2, intersecting the lower line [i.e.
rt − σ

√
t] at times T1 and T2, respectively.

In view of the above, therefore, we write 

bT T ≤ rT − σ
√

T (1)

which, when limited to the equality5, gives

bT T = rT − σ
√

T (2)

or

bT = r − σ√
T

(3)

after dividing both sides by T. Equation 3, therefore, expresses the yield,
bT , as a function of maturity, T, with the expected r and σ remaining con-
stant over the time horizon. This behaviour, as illustrated in Figure 2, por-
trays an upward sloping curve, typical of a normal yield curve. 

With reference to earlier works, we should mention Siegel and Nelson
(1988), who, through a totally different approach, derived a similar rela-
tionship, but with a maturity dependence of 1/T instead of 1/

√
T. This

was obtained by assuming that the yield decays as 1/T around an asymp-
totic value reached at T → ∞.

Returning to Equation 3, an alternative way of plotting, which might
be more useful for testing purposes, is to represent bT as a function of
1/

√
T. This leads to a straight line with a y-intercept of r and slope of −σ ,

as demonstrated in Figure 3. The advantage to this type of representation
is that the expected return of the underlying security, along with its im-
plied volatility, could be easily extracted.

2B. Scenario II—Investing in a Risky Security with
Expected Return Lower than the Interest Rate
This scenario, as depicted in Figures 4a–b, differs from the previous in that
the expected average return of the security is “low”. Here “low” means ei-
ther low enough to cause the lower bound, rT − σ

√
T, of the quasi-parabola

^
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Thus, given the various aspects of the yield curve, especially in the light
of the quasi-equilibrium models, along with the different governing theo-
ries summarised above, we now proceed to develop the framework for an
alternative approach. The model that results from this should, hopefully,
provide us with not only an intuitive explanation for why a yield curve as-
sumes a certain shape—be it normal, inverted or flat—it will also, among
other things, open up a direct link with the Capital Asset Pricing Model
(CAPM ), placing the yield curve well within the confines of classical risk-re-
turn principles in portfolio management theory. 

2. Methodology
The framework for the model is derived here by considering investing
in a risky security, or portfolio of securities, taking into account three
different scenarios. These securities are not pre-defined. Rather, they
are “underlying”, similar in context to option-pricing methodologies,
where characteristics such as “implied” return and volatility are ex-
tracted from market data. In addition, as with any other model, certain
simplifying assumptions are made. As we construct the model and in-
troduce these assumptions, every attempt is made to rationalise and
justify them. 

2A. Scenario I—Investing in a Risky Security with
Expected Return Higher than the Interest Rate
Consider the more common scenario2 of investing in a risky security with
expected returns higher than the interest rate. For this, one needs to: 

a. first take a view on the total return, r, and volatility or standard de-
viation, σ , of the security going forward.

b. Plan to hold the security for a certain length of time, T. 

c. Borrow sufficient funds to purchase the security, with intent to sell
it back at time T and pay off the interest with the proceeds. Issuing a
zero bond with maturity T and yield to maturity bT could do this.

d. The yield could be selected such that the cumulative interest paid at
time T—i.e. bT T—is set at less than or equal to rT − σ

√
T,3 which is the

security’s total return at time T at risk level −1σ . It is understood
that, although at maturity the net expected return, (r − bT)T, is posi-
tive owing to r > bT , as per the definition for Scenario I, there is still
some likelihood, due to the security’s risk, that the investment may
under perform and produce a return of less than bT T. 

Note that Step 4 is analogous to a value-at-risk (VaR) approach, whereby
the quantity bT T is set at 1σ below the mean of the distribution of the T-
year return from the risky security, i.e. rT − σ

√
T. This, effectively, repre-

sents a level of risk aversion where the resulting interest rate, bT , acts as a
hedge against potential losses incurred from holding the underlying risky
security until maturity. 

The situation is exemplified in Figure 1, which illustrates the movement
of the security’s return along ±1σ in the total return vs. time plane. The di-
agram basically portrays something similar to, but not exactly, a parabola4

enveloping the time-varying mean, rt, the latter moving linearly with re-
spect to time. In addition, two yield values, b1 and b2, are included, matur-
ing at T1 and T2, respectively. These maturity times denote the points where
lines b1t and b2t intersect the lower VaR level, being rT − σ

√
T. Why should
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Figure 1: Movement of the risky security in time, with
mean return r and standard deviation σ .
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to fall entirely in the negative territory, as illustrated in Figure 4a [i.e. this
could be caused by a large σ ], or that the interest rates are higher than the
security’s expected return, as shown in Figure 4b. The latter may happen
even when σ is not sufficiently large to cause the bottom portion to fall in
the negative region. It is, never the less, important to emphasise that the
“low-growth” scenario does not necessarily mean expected security returns
that are [or an economic growth rate that is] negative.6

In either case above, although one must again first take a view on the
total expected return, r, and standard deviation, σ , of the risky security
going forward, as in Scenario I, the rules of borrowing the cash to invest
in the security, as outlined there, do not apply. Instead, one must

a. raise the cash by selling the underlying security, with intent to buy it
back at time T, and 

b. use the cash to long a bond with yield and maturity bT and T, 
respectively.

This approach is illustrated in both Figures 4a and 4b, where, in con-
trast to the previous scenario, the yield line, bT T, intersects the top curve,
rT + σ

√
T, at time T. Therefore, to profit from this investment, the follow-

ing criterion must be met:

bT T ≥ rT + σ
√

T (4)

Figure 3: Equation 3 plotted as bT vs. 1/√T. The
outcome is a straight line with slope –σ and inter-
cept r, equal to the implied [negative] volatility and
mean return, respectively, of the underlying security.

Figure 2: An illustration of the yield curve, obtained
based on the methodology leading to Equation 3.
Note that this is a normal yield curve.

(a)

Figure 4a: Investing in a risky security with low r and high σ.
This situation involves selling the security and longing the
bond. Again, as in Figure 1, the bounds of ±1σ are also
shown, moving at rt + σ√t and rt – σ√t, respectively, the lat-
ter falling completely in the negative territory. The yields, b1

and b2, intersecting the upper line [i.e. rt + σ√t] at times T1

and T2, respectively, are also shown.

(b)

Figure 4b: Investing in a risky security with returns lower
than the interest rate. Again, the bounds of ±1σ are also
shown, moving at rt + σ√t and rt – σ√t, respectively, al-
though, in contrast to Figure 4a, the latter does not fall
completely in the negative. The yields, b1 and b2, inter-
secting the upper line [i.e. rt + σ√t] at times T1 and T2, 
respectively, are also shown.
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where, again, the equality shall be used to give:

bT T = rT + σ
√

T (5)

Equation 4 depicts a net positive return of (bT − r)T to the portfolio, but
with a VaR limited to +1σ .

Once more, dividing both sides of Equation 5 by T leads to

bT = r + σ√
T

(6)

which represents the yield curve for Scenario II. This is illustrated in
Figures 5 and 6, where the yield, bT , is plotted against T and 1/

√
T, re-

spectively. The curve in Figure 5 is downward sloping, consistent with an
inverted yield curve.

With regards to inverted yield curves, it is accepted that they general-
ly occur when a recession is anticipated, although it is still widely debat-
ed as to what exactly causes the inversion. For instance, while some say
that an expectation of falling short rates leads to the inversion, others
argue that growing uncertainties about the future is what causes it. We
note here that both explanations fall within the scope of Scenario II. To
illustrate, falling short rates are expected when interest rates are simply
deemed to be too high. This situation, which reflects the behaviour of the
treasury yield curves during the early part of the 1980s decade, is clearly
portrayed in Figure 4b. In contrast, the case of growing uncertainties
about the future is displayed in Figure 4a, where σ , which proxies the de-
gree of uncertainty, is large enough to force an investor to follow the
hedging strategy consistent with that of Scenario II.

2C. Scenario III—Investing in a Risky Security With
Negative Expected Returns 
This situation is illustrated in Figure 7, where the risky security is expect-
ed to have a negative mean return. Here, also, in anticipation of falling
returns, the investor is likely to follow the strategy of selling the security
and longing the bond, as outlined in Section 2B. Consequently, the driver
of the yield curve is, once more, similar to that in Scenario II, namely the
upper curve rt + σ

√
t. What is notably different, however, is that, owing

to the security’s return, r, being negative, the investor is able to maximise
profits by selecting a specific maturity, ̃T, corresponding to a yield of b̃, as
illustrated in Figure 7. Ignoring the trivial details, one could demonstrate
that, with r negative, rt + σ

√
t is maximised at some maturity ̃T, where

T̃ = σ 2

4r2
(7a)

which coincides with an interest rate b̃ equal to the negative of the secu-
rity’s return, i.e.

b̃ = −r (7b)

What this suggests, therefore, is that, in anticipation of a declining
market or economy, investors will concentrate their investments around a
single, well-defined maturity, ̃T, which could be relatively short, depending
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Figure 5: An illustration of the yield curve pertaining to Scenario II,
represented by Equation 6 and plotted as bT vs. T. Note that this is
an inverted yield curve.
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Figure 6: Equation 6 plotted as bT vs. 1/√T. The out-
come is a straight line with slope σ and intercept r,
equal to the implied volatility and mean expected re-
turn, respectively, of the underlying security.

Figure 7: Investing in a risky security with negative
expected returns, r, as described in Section 2C. The
liquidity trap is shown to occur where the upper por-
tion of the curve is at a maximum.
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on the magnitudes of σ and r in Equation 7a—for example, the higher the
certainty [i.e. lower σ ] about falling markets, the shorter the maturity, ̃T, of
the bond investment. As a result, with a definite expectation of negative
market returns [or economic growth] and, thus, a σ that approaches zero,
the investment turns into a short-term saving, which, nonetheless, is con-
sistent with the notion of the liquidity trap, where short-term savings are
the norm, all in anticipation of improving conditions and, ultimately, in-
creasing interest rates.

3. Limitations
A limitation that immediately comes to attention here concerns Scenario
I. Returning to Figure 1, it is observed that a portion of the lower curve,
rT − σ

√
T, becomes negative, with no positive yield identifiable at or

below the −1σ VaR boundary. This region, which is defined by character-
istic time scale, τ , can be shown to fall within

0 ≤ τ ≤ σ 2

r2

or 

1√
τ

≥ r

σ

according to Equation 3. This implies that the maturities associated with
the yield curves for Scenario I, as described in Section 2A, must satisfy
the condition of T > τ , thus allowing one to express the above as

T >
σ 2

r2
(8a)

or

0 ≤ 1√
T

≤ r

σ
(8b)

If we let σ 2/r2 ∼ 1 represent a conservative order-of-magnitude estimate of
the realistic cases detailed in Section 4A below, we conclude that what
leads to the normal yield curves of Scenario I is limited strictly to debt
maturities T greater than 1 year.

4. Observations
This part consists of certain observations, both empirical and theoretical,
which deal with the model’s validity, as well as some of its characteris-
tics. The empirical observations, which comprise a summary comparison
of the results with data, are included in Section 4A. The remaining sec-
tions, in contrast, focus on the theoretical aspects by (ii) establishing a
link with the CAPM, (iiii) discussing how the underlying security’s risk pre-
mium manifests itself here and why it could possibly be associated with
the equity premium puzzle and, finally, (iiiiii) addressing the implications
of the no-arbitrage principle.

4A. Empirical
To examine the empirical validity of this model, it is helpful to plot the
yield curves as bT vs. 1/

√
T, in accordance with Figures 3 and 6. Figures 8

and 9 are such plots, representing the US government [discount bond]
yields at different dates. Each curve has a best-fit straight line passing

through it, specifying the implied return, r, and volatility, σ , of the under-
lying security, as well as the value of the R2. These properties are sum-
marised in Table 1.

For interest, we have provided a selection of different economic
regimes—e.g. when interest rates were relatively high [Curves A], as in
Scenario II, which led to inverted curves, as well as eras of relatively high
market returns and/or low volatility [Curves B-F]8, as in Scenario I, which
subsequently produced normal curves. It should be noted that while the
above do not represent an exhaustive sample of the curves that behave ac-
cording to the model, there are others that are inconsistent with the
model’s predictions. In addition, the limitations discussed in Section 3
above constrain the curves in Figures 8 and 9 to maturities longer than
one year.

Figure 8: Samples of yield curves, illustrating time regimes of normal and in-
verted yield curves and their linearity when plotted against 1/√T, where T is
the maturity in years. These data are from McCulloch and Kwon (1993),
spanning from Jan-52 to Feb-91 and extending to T = 10 years. 
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Figure 9: Samples of yield curves, illustrating time regimes of normal yield
curves and their linearity when plotted against 1/√T, where T is the maturi-
ty in years. These are the Fama—Bliss7 data, spanning from Jan-74 to Dec-
04 and extending to T = 5 years.
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Furthermore, an order of magnitude comparison of the implied re-
turns places the underlying security at somewhere between a typical US-
based index [returning about 10% per year, as estimated from a risk-free
rate of about 5% plus a risk premium of roughly 5%] and the annual,
nominal GDP growth rate, which normally lies at around 4%. Lastly, none
of the data consisted of a negative implied return, which could have po-
tentially led to a liquidity trap.

4B. The Sharpe Ratio
Further to the above, we now demonstrate that the model ties in neatly
with the CAPM. This link comes via the Sharpe Ratio, which appears
here in a “dimensionless” form, as opposed to its classical, dimensional
counterpart.

Generally speaking, the Sharpe Ratio, Sh, is expressible by

Sh ≡ r − b

σ
(9)

where r and σ are, as defined earlier, the expected return and standard
deviation, respectively, of the underlying security and b is some risk-free
rate. As to what exactly b should be has been widely debated since the in-
ception of the CAPM. For instance, some insist that it must be the shortest
available government treasury rate, while others argue that it must be
the government rate, i.e. bT , with a maturity that matches the invest-
ment’s holding period. All in all, these arguments tend to be subjective,
to the point that the use of the risk-free rate in CAPM still happens to be a
matter of personal preference.

It is suggested here that the root of this problem lies in how the
Sharpe Ratio is defined. Acquiring a dimension of [1/

√
time],9 as indicated

by Equation 9, rather than being dimensionless, effectively means that
the measurement time scale or frequency of r, σ and b—i.e. whether these
parameters are measured monthly, quarterly, annually, etc.—can consid-
erably affect the magnitude of Sh. A non-dimensional depiction of Sh
should, never the less, be able to eliminate this problem.

To illustrate, we introduce a maturity-adjusted Sharpe Ratio, ShT , such
that

ShT ≡ [r − bT ]T

σ
√

T
(10a)

or

ShT ≡ [r − bT ]
√

T

σ
(10b)

which, in effect, characterises the Sharpe Ratio as a function of
the maturity of the investment. For instance, if r, bT and σ were
all annualised parameters and T the maturity of the investment
given in number of years, then the products rT and bT T, which ap-
pear in the numerator of Equation 10a, are, respectively, the cu-
mulative or total expected return and interest paid at the end of T
years and σ

√
T [in the denominator] the expected T-year-based

standard deviation of the returns. The expression in 10, there-
fore, extends the measurement time scale of the Sharpe ratio
from its classical, annualised form given in Equation 9, which is
1 year, to T years.

Let us now return to Equation 3 and re-write it as

r − bT

σ
= 1√

T
(11a)

or simply

[r − bT ]
√

T

σ
= 1 (11b)

Comparison of the above with Equation 10b leads to us to conclude that
along the yield curve produced by the present model, the maturity-ad-
justed Sharpe Ratio remains constant, in this case being 1.10

The above, in effect, carries with it two important messages. First, any
yield curve generated by the proposed model is characterisable by a con-
stant [risk] preference, bearing in mind the relationship between in-
vestor’s preference and Sharpe Ratio. The constant preference here signifies
a yield curve that is determined by moving along rT − σ

√
T, which is the

lower portion of the quasi-parabola depicted in Figure 1. Second, the risk-
free rate to be implemented when defining the Sharpe Ratio must be
such that the maturity, T, of the borrowing should match the holding pe-
riod of the investment. This makes sense because a borrowing rate with a
maturity of T years is indeed risk free, owing to the fact that it remains
unchanged throughout the time period T and provided that the security
is also held over the same length of time.

4C. The Risk Premium of the Underlying Security
It is useful now to refer to the risk premium of the underlying security in
the context of this work and see how it relates to the equity risk premium
(ERP) and the associated puzzle. This is important because, as noted earlier
(Cohen, 2002), even though there is little argument that the risk-free rate
should be based on a government-issued security, questions still abound on
what maturity it should take. We shall try to address this issue here.

Let us begin by expressing Equation 3 as

r − bT = σ√
T

(12)

which is the yield-vs.-maturity relationship for a normal yield curve and
recall that, if T were to be given in number of years, r and σ must be in

^
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TABLE 1: CLASSIFICATION AND IMPLIED [ANNUAL]
PROPERTIES [R, σ AND R2] OF THE YIELD CURVES DE-
PICTED IN FIGURES 8 AND 9. NOTE THAT ALL THE IM-
PLIED EXPECTED RETURNS ARE POSITIVE.

Curve Time Classification Implied, expected Implied R2

frame mean annual expected annual
return, r(%) volatility, σ (%)

A Dec-80 Inverted 11.32 1.80 0.9816
B Jun-83 Normal 11.66 2.12 0.9943
C Apr-89 Normal 8.75 2.45 0.9671
D Sep-94 Normal 8.24 2.40 0.9930
E Jun-99 Flat to Normal 6.15 0.97 0.9780
F Jul-04 Normal 4.91 2.96 0.9635
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annual frequency11. This, subsequently, implies that the risk premium of
the underlying security with respect to the T-year risk-free rate is σ/

√
T,

which means, for instance, that the risk premium relative to the 1-year
risk-free rate is σ , relative to the 5-year risk-free rate is σ/

√
5 and so on. 

How does all this relate to the ERP puzzle? This puzzle originates from
the fact that the typical, empirical measure of roughly 5% for the ERP,
based on the historical S&P index, is an order of magnitude or so higher
than that which can be explained by any economic or financial theory.
This value, it must be noted, is generally calculated with respect to short-
er-term government treasuries—namely, 1 year or even less. The measured
equity return, r, on the other hand, is typically averaged over dozens of
years, which makes it a long-run parameter. 

The common practice of measuring the long-run view of the security’s
return against a short-term interest rate could point to an inconsistency in
how the ERP is obtained. To demonstrate, let us return to Equation 12 and
note that with r representing an infinite-horizon view of the underlying
security’s average return, its difference relative to the 1-year risk-free rate,
proxied here by the 1-year government yield, would be σ .An estimate of
this based on the values of σ presented in Table 1, therefore, leads to a
risk premium of about 2%, which is, by order of magnitude, consistent
with the ERP puzzle. In light of this, as the tenor, T, of the risk-free rate in-
creases, the security’s risk premium declines with 1/

√
T. Subsequently,

the risk premium, and hence the puzzle, can be eliminated if the under-
lying security’s return were to be compared against a risk-free rate with
maturity T → ∞. 

Finally, how effective in practice is this approach in reducing the sever-
ity of the ERP puzzle? Perhaps quite effective, if we were dealing with val-
ues for σ on the order of those presented in Table 1 and recognising that
the highest maturity for a US government bond is 30 years. The reason is
that with a σ of about 2%, as per those in Table 1, if the risk premium were
to be based on a 30-year yield, it would then be roughly 2%/

√
30 ≈ 0.35%.

Although this is still higher than what the ERP should be in theory12, it
does represent a significant improvement over the original 2% calculated
otherwise on the basis of the 1-year risk-free rate.

4D. The No-arbitrage Principle
The no-arbitrage principle plays an important role in every security-pric-
ing model. The literature on this subject is extensive, but for bonds and
bond yields, in general, it can be divided into two areas (Fisher, 2001):
(ii) equilibrium and (iiii) dynamic. Since the model proposed here is equi-
librium, we shall avoid going into the details of the latter and, instead,
refer the interested reader to the literature [e.g. Benninga & Wiener (1998)
and Fisher (2001) and references therein].

Whether equilibrium or not, the no-arbitrage principle manifests it-
self in bond-pricing and yield-curve models through the expectations hy-
pothesis, which has already been discussed in the Introduction section.
The main point here is that the forward rates that result from the yield
curve must be such that they satisfy the no-arbitrage condition at every
point along the different tenors on the curve. 

In reference to the present model, however, the theoretical issue that
arises applies particularly to the normal curves, which are derivable in
the way outlined in Section 2A. As portrayed in Figure 1 and re-iterated
later in Section 3, the problem with this model is that shorter yields [i.e.

less than 1 year or so] cannot be extracted because they turn out to be
negative. 

Aside from the above-mentioned limitation and notwithstanding the
use of the expectations hypothesis to extract the forward rates, which is
a universal and well-established procedure, there is another source of ar-
bitrage that crops up here. This relates to a flat yield curve in the manner
discussed in Benninga & Wiener (1998). Briefly, the problem here is that
if one were to construct a portfolio of bonds with different maturities
based on a flat term structure at, say, time t, then the price of the same
portfolio at a later time, say t + �t, assuming the curve remains flat, al-
ways goes up regardless of whether the interest rate increases or decreas-
es. This, subsequently, creates an unambiguous arbitrage opportunity,
independent of which direction the rate moves.

How is this reflected in the current model? In reference to Equations 3
and 6, setting the expected volatility, σ , equal to zero leads to a flat yield
curve. This makes sense because, by definition, a flat yield curve, in asso-
ciation with the expectations hypothesis, implies no uncertainty about
the future and, thus, no anticipated rate changes going forward. But,
never the less, the very fact that the model can generate a flat curve, albeit
under the constraint of σ = 0, makes it vulnerable to arbitrage, provided
that the curve is flat and expected to remain flat going forward. 

One, however, could argue against this vulnerability in two ways.
Firstly, how likely is it to see a flat yield curve in practice, let alone a flat
curve that maintains its shape over time? Secondly, a flat curve under the
expectations hypothesis implicitly rules out any changes in the forward
rates. Therefore, the arbitrage scenario described in the preceding para-
graph is self-contradictory and, thus, cannot be supported.

In view of the above, therefore, we conclude that the only area of con-
cern with regards to not satisfying the no-arbitrage principle is that this
model cannot provide shorter rates, owing to the limitation discussed in
Section 3. Other than that, forward rates that satisfy no arbitrage could
be easily derived for this model, given Equation 3 and the standard meth-
ods that are described in the literature [e.g. see Fisher (2001)].

5. Practical Applications
The model, as it stands now, is perhaps at best a framework in its most
basic form, but, never the less, it can potentially lead to an approach that
is different from, and more intuitive than, what is now available. To be
more useful in practice, it will, of course, need some major calibration.
One possible way to achieve this is to relax the risk-aversion constraint of
moving strictly along the lower portion of the quasi-parabola—i.e. along
the −1σ line for all the maturities—as one generates the normal yield
curve from it. This calibration could, for example, be undertaken by in-
troducing an error term at each tenor to account for the differences be-
tween theory and data. A comprehensive historical analysis of this error
could form the basis of this calibration.

Another type of calibration could involve a historical mapping of the
empirical values of r and σ , such as those in Table 1, onto, let’s say, GDP
[or some market index] growth rate and volatility, respectively. Such an
analysis would then enable the user to work backwards—i.e. take the eco-
nomic projections of GDP growth and uncertainty going forward, map
them into r and σ and insert these parameters into the model to estimate
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a projected yield curve. The outcome of this could possibly be used to
trade futures in bonds, swap rates, etc., or for trading interest rates and
swaps across currencies if forecasts of relevant economic data are avail-
able for both currencies.

A further potential application is sensitivity analysis. For instance,
how is the term structure impacted as economic projections of, let’s say,
GDP and uncertainty are changed or revised? 

And last, but not least, the question might arise on whether or not
this model has any applicability to option pricing. One way, for instance,
might be to substitute the risk-free rate that comes out of here directly
into an option-pricing model, such as the Black-Scholes. This has the ben-
efit of reducing the number of exogenous inputs into the equation. The
answer to this question, however, is no, simply because, owing to the lim-
itations discussed in Section 3 here, this model works for maturity time
scales longer than one year, which is above the practical range of most
typical vanilla options, such as calls and puts.

6. Conclusions
An intuitive model for the yield curve has been presented. Based on the
notion of VaR, the approach leads to interest rates that hedge against po-
tential losses incurred from holding a risky security until maturity.

Several simplifying assumptions are made, one of which is that the
normal, symmetric diffusion process governs the stochastic behaviour of
the underlying security—namely that the expected return grows linearly
with time [i.e. constant mean] and a volatility that widens as the square
root of time [i.e. constant variance]. Although severe, this assumption is
common to virtually all practical stochastic models. Nonetheless, the re-
striction could be relaxed by utilising more realistic features of security
returns distributions, which are asymmetric and with fat tails.

Another assumption is that the VaR is bounded by ±1σ . It is noted
that changing these arbitrary limits of risk aversion would in no way
alter the overall qualitative outcome of the model. The model would still
produce both normal and inverted yield curves that progress linearly
with 1/

√
T, as suggested by Equations 3 and 6, respectively, the only dif-

ference being slopes that are different from ±1σ . This, of course, is quite
limiting and could perhaps, along with the previously mentioned as-
sumptions, explain the failure of the model in some instances. 

In view of the above assumptions, several conclusions have been
reached. One is that the model theoretically leads to three types of shapes
for the yield curve, which, in all cases, relate directly to 1/

√
T. The nor-

mal curve is predicted to occur under normal conditions when interest
rates are lower than the expected return of the underlying security,
which is generally higher owing to the security’s risk premium. The in-
verted curve is found to show up in periods of high interest rates, as ex-
plained in Section 2B, or when uncertainties, as proxied by the standard
deviation of the risky security, are relatively large. Finally, a flat yield
curve is predicted during times of low expected uncertainty or as σ → 0

There are, in addition, other findings. One is that the model fits in
tightly with the CAPM, linking the interest rates and their respective ma-
turities to the risk and return of the underlying security via the Sharpe
Ratio, Sh. Basically, after adjusting Sh for maturity, the yield curve would
be describable by a constant Sh. In view of the relationship between Sh

and investor preference in classical CAPM, one could, subsequently, argue
that a yield curve that follows this model belongs to a risk preference
that is characterised by VaR limited to −1σ ; i.e. moving along the lower
portion of the quasi-parabola shown in Figure 1. The second finding sim-
ply identifies the risk-free rate for use in the Sharpe Ratio and defines it
as the yield to maturity, bT . The logic here is that with the interest rate,
bT , remaining constant and, essentially, free of any rollover-related risks,
it should then truly represent the risk-free rate for the borrowing, which
has a maturity that matches the holding period of the security.

A further finding involves the well-known ERP puzzle. The conclusion
here is that comparing an infinite-horizon view of the underlying securi-
ty’s [e.g. an equity index] return against a short-term risk-free rate may be
a potential cause. The puzzle could, in theory, be explained and/or elimi-
nated if one were to compute the risk premium based on a risk-free rate
that has an infinite maturity. However, as this is not practical, one could,
at least, reduce the severity of it by focusing more on the longer maturity
government rates [e.g. 30 years] rather than the shorter ones [e.g. 1 year
or less].

As for practical applications, it is suggested that the model undergo
some calibration in order to be useful. This calibration could take the
form of an error analysis, as well as a mapping of the model’s outputs of
the implied r and σ onto measured economic or market variables, such
as GDP or market growth rates and volatility.

We finally conclude here by reiterating that this is only a model,
which, like any other, has its advantages and disadvantages. One disad-
vantage is that that it is not dynamic, although it has the potential for
serving as a platform for a more sophisticated dynamic or stochastic set-
ting. Moreover, although several examples of its validity have been pro-
vided that illustrate the predicted linearity in 1/

√
T [e.g. in Figures 8 and

9], other situations [although none has been provided here in the interest
of space] can be shown not to follow suit. Among the advantages, notwith-
standing, are that (i) it is intuitive, (ii) it explains the typical variations in
yield curves—i.e. normal, inverted and flat, (iii) it predicts the existence of
the liquidity trap and, lastly, (iv) it links the yield curve with CAPM—all
these achieved within a single framework.

^
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FOOTNOTES & REFERENCES

1. Terminology such as “high uncertainty”, “high interest rates” and “low growth” will be
defined in due course.
2. This scenario, which leads to the “normal” yield curve, is more common than the one
discussed later in Scenarios II and III. The reason for the margin between the security’s 
expected mean return and the risk-free rate is the security’s risk premium, which is ad-
dressed in more detail in Section 4C.
3. Obviously, we are assuming here that the risky security follows the simple diffusion
process. Although this is a rough assumption, it happens to be the most common and
forms the foundation of almost every pricing methodology that revolves around stochastic
behaviour.
4. The shape becomes a parabola as r approaches zero.
5. The inherent argument supporting the equality is that the lender demands the maxi-
mum he can get and the borrower [investor in the underlying security] is happy to provide
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it as long as it fits within his preference criteria. Admittedly, this is debatable, but we shall
proceed, leaving it outside the scope of this paper.
6. The negative expected security return is, of course, characteristic of a declining econom-
ic performance.
7. The Fama-Bliss data come from Section 4.3 of CRSP Monthly US Treasury Database
Guide [Version CA90.200502.1], Center for Research in Security Prices, University of
Chicago Graduate School of Business.
8. Curve D suggests a low implied volatility compared to the others and can, therefore, be
considered nearly flat.
9. This is because r and b both have dimension [1/time], while σ acquires dimension
[1/√time].
10. The number of standard deviations determines the value of the constant that one
chooses to limit the VaR.
11. Likewise, if T were to be given in number of quarters, for instance, then r and σ must
be quarterly in frequency.
12. This gets worse for an equity index, such as the S&P, whose annual volatility is around
10% or so.
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