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The size distribution of particles in dispersions is an important property that is
usually measured. In many cases, however, theoretical or semi-empirical models are
developed to predict these distributions. The models, none the less, come with subtle
constraints that limit the régimes of their applicability. At present, there is no
systematic approach for identifying these limitations, which, if ignored, can lead to
serious flaws. In this work we introduce an entropy-related property of the
dispersion, and demonstrate that this property, which is intensive, and, therefore,
independent of system size and configuration, can be used to pinpoint where these
limitations lie.

1. Introduction

Particle size distributions have long been used to characterize dispersion systems. In
some cases, the size distributions vary with time, as in continual coagulation or
fragmentation, whereas in many others, they maintain a steady state.

For reasons that these distributions are crucial to industrial applications and
academic research, a vast number of theoretical and experimental works focusing on
explaining and predicting their forms (and evolution, in the case of time-dependent
systems) have been generated over the years. Also, the fact that size distributions
can be measured fairly accurately and easily has helped investigators put to test
many of the proposed theories. Consequently, some major contributions in the area
of predicting particle size distribution functions in dispersions have arisen. These
include, to name just a few, the Rosin—-Rammler distribution in crushing (Rosin &
Rammler 1934), Smoluchowski’s distribution for the binary coagulation process, and
Friedlander’s self-preserving distribution (Friedlander & Wang 1966), which extends
Smoluchowski’s theory to long-time limits when the average particle sizes become
large.

Having mentioned some of the well-known distributions found in common day-to-
day physical processes, the existence of many others, namely the Poisson, normal,
log-normal, beta, etc., must not be overlooked. These, however, are more general and
mathematical in nature, and are useful because their forms can be made to fit
relevant data by way of empirical adjustments.

Therefore, many choices of distribution functions are available for representing
particle sizes. What these, and most others not listed here, have in common is that
they all contain certain superficial qualities. For instance, the range of particle sizes
for the Rosin—Rammler distribution covers from zero to infinity, and this is certainly
not realistic.
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Furthermore, there are severe limitations on the ranges of validity of many of
these distributions. For example, Smoluchowski’s theory of coagulation by binary
collisions, beginning with a fully dispersed initial condition, retains its validity up to
short times. After this, Friedlander’s self-preserving distribution, which is applicable
only after a certain ‘large average particle size’ is reached, takes over. However,
exactly what this ‘large average particle size’ represents cannot be established from
the derivation of the asymptotic theory. Thus, a systematic way, based on some well-
accepted principle(s), is needed to identify such régimes quantitatively and
accurately. Presenting such an approach, and demonstrating its potential appli-
cations in evaluating particle size distributions in dispersions, is the primary
objective of this work.

2. Problem formulation

As mentioned above, this work is aimed at introducing an approach that would
enable one to accurately identify the limits of validity of particle size distribution
functions. In the interest of space, we shall, for illustrative purposes, refer to only a
few examples of well-known size distributions. Narrowing this work down to these
does not limit the applicability of the proposed method. Rather, the approach is
general, and, therefore, remains useful for exploring the limitations of almost any size
distribution function of interest.

To begin, we consider a dispersion in which the particles are clusters consisting of
elementary particles. The number of these particles in a cluster shall represent the
cluster size, ¢. Hence, a dispersion comprising a number of clusters of different sizes
is subject to the following constraints

N, = 2N, (1)

where IV, is the number of clusters of size ¢, IV is the total number of clusters, and N,
is the total number of elementary particles. In a closed system, therefore, NV, remains
constant, while N and IV, may or may not vary with time.

For convenience, we define the dimensionless quantities

N=N/N, and N,=N,/N, (3a, b)

to represent the number ratios. Note that 1/N is also the average cluster size, i
Hence, equations (1) and (2), respectively, can be written as

ave-
SN, =1 (4)
A

and SN, =N=1/i,,. (5)

Finally, if we define the degeneracy, Q(V,,N,,N,,...), to signify the number of
ways a dispersion containing IV, primary particles can be arranged to consist of N,
clusters of ¢ = 1, N, clusters of ¢ = 2, N, clusters of ¢ = 3, and so on, then (Cohen 1991)

QW Ny, Ny, ) = Nyl TIN [t (6)
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Using equations (1)—(5), and noting that typical cases involve moderate to very large
N, and N,, the above can be rearranged as
In (.Q)
N,

—N)[In (Ny) — 1]~ ZNln( i) = ENln(@') (7)

upon incorporating Stirling’s approximation for In (¥,!) and In(N,!), i.e. In(x!) =
xIn (x) —x for moderate to large x. This, of course, can raise questions concerning the
applicability of equation (7) to very wide distributions because, in some of these
cases, the moderate to very large-N; criterion necessary for Stirling’s approximation
to hold may be violated. Therefore, for what follows hereafter, we shall consider only
situations for which equation (7) is suitable, which means that for all 4, N, ranges
from moderate to very large.

With the above in mind, we now introduce a property, o, of the dispersion, and
define it as

o =In(2)/Ny—(1—N)[In (Ny) —1]. (8)
Based on this, equation (7) becomes
o=—%NIn®,)— ZN In (3!). 9)

[

This property possesses two important qualities. First, it is related to the entropy
of the distribution since In () is directly proportional to the statistical definition of
entropy. Second, it is an intensive property of the system because N,, which is the
governing parameter in equation (9), is a number ratio (as defined in equation (35)),
and, therefore, it is independent of system size. To prove this, if we let V be the
volume of the system, then dividing numerator and denominator of equation (3b) by
Y makes N,, and subsequently o, dependent only on concentrations, which them-
selves are intensive properties. The significance of o being intensive is that equation
(9) becomes applicable to the particle size distribution function of any system,
regardless of its volume or configuration.

Next, with the aid of Lagrange multipliers we extremize o while subjecting it to
the constraints of equations (4) and (5). This is written as

0 . =
— [0+ A, 2N, + A, XN, =0, 10
aN,.[ 12 22 ] (10)
where A; and A, are the Lagrange multipliers. Inserting equation (9) into the above,
differentiating w1th respect to IV;, and evaluating A, and A, using equations (4) and
(5), we find that o is max1m17ed when

N, = exp (—p) ut~1/i!, (11a)
where u is related to N, or the average cluster size, i,,0(iy0e = 1/V), through
N=({—er/p. (11b)

To avoid any unnecessary repetition, much of the derivation leading to equation
(11a, b) has been left out of here because the steps are very similar to those in Cohen
(1991). Of importance, however, is that upon inserting equation (11a) into equation
(9), and utilizing equations (4), (5), and (11b), we obtain the maximum possible value
that o can attain. This shall be denoted by o,,,. Further manipulation yields the
following N -
Omax = NIn[(e#—1)/N]—1Inpy, (12)
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Figure 1. Equation (12) plotted as o,,,, against N. No size distribution function,
theoretical or experimental, can exist above the curve.

whose behaviour is depicted in Figure 1. It is also necessary to note that since equation
(11 @) is the Poisson distribution (multiplied by a factor of g71), then ¢ is maximized
when the size distribution, N,, is formed entirely by random behaviour. _

A crucial implication arising from this is that, for all N ranging between 0 < N < 1
(or 00 > 14, = 1), virtually no particle size distribution can acquire a value of o
greater than o,,,,. By this reasoning, therefore, if we introduce the differential Ao as

Ao = 0 —0, (13)

we get the inequality
Ao > 0. (14)

Simply stated, equation (14) is the second law (of thermodynamics) applied to
particle size distributions. Consequently, if a size distribution function is proposed
that acquires a value of Ac < 0 at some N, then it simply violates the second law,
and, hence, cannot exist at that specific N. Examples of such violations are presented
next.

3. Applications of the inequality Ac > 0 to some physical situations
Upon substituting equations (9), (12), and (13) into (14), we obtain

Ao =Nln [Mz—v: 1]—m (w)+ XN, In (N)+ 2N, In (i!) > 0. (15)

Therefore, if N, is provided for a dispersion, N and x can then be evaluated from
equations (5) and (115), respectively, after which Ao can be computed using equation
(15).

It is important to note that because o is an intensive property, the inequality
imposed by equation (15) is general, and, consequently, it can be used to assess the
limitations of almost any proposed particle size distribution function. In the interest
of space, however, we shall restrict this work to distributions arising from some
well-known physical phenomena, namely those described by Smoluchowski, and
Friedlander & Wang (1966), and Brown (1989), where the latter was introduced
relatively recently to model fragmentation processes. In addition to these, equation
(15) shall also be used to examine some experimental cluster size distributions
measured in continuous flow.
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Figure 2. Ao against V, illustrating the paths of two time-dependent distributions. Curve (i) belongs
to Smoluchowski’s coagulation equation (equation (16)), which is valid for initial times when
N =~ 1. Curve (ii) is Friedlander’s self-preserving distribution (equation (18)) applicable to later
times when IV < 1. The arrows mark the direction of the coagulation process. Inset shows the data
of Chen et al. (1991) (crosses) and Graham & Bird (1984) (triangles), collected from their continuous
flow systems.

(@) Application to Smoluchowski’s theory of coagulation by binary collisions

Following the nomenclature adopted here, the result of Smoluchowski’s theory of
coagulation by binary collisions at initial times can be summarized as

N, = N?[1—-N)-. (16)
In equation (16), N is related to time, ¢, through the expression
N=1/(1+t/t,), (17a)
where ¢, is the coagulation time, which, for a brownian process, is given by
t, = 3u/4xTc,. (17b)

In the above, « is Boltzmann’s constant, 7' is the absolute temperature, ji is the
viscosity of the continuous phase, and ¢, is the primary particle concentration, equal
to N,/V.

Substituting equation (16) into (15), utilizing the relation between x and N in
equation (115), and finally (numerically) computing Ao, yields curve (i) in figure 2.
Curve (ii) and the data points, also appearing in this figure, shall be discussed shortly.

Beginning at t =0 when N=1 (by equation (17a)), which denotes the fully
dispersed initial condition, the path of equation (16) follows curve (i) from right to
left in the Ac—N plane. Evidently, the curve is at first asymptotic to the Ao = 0-axis
near N = 1, then deviates from it by slowly rising in the Ag > 0 direction, to finally
reach another asymptote when N becomes small.

The asymptote to the (Ac = 0)-axis near N = 1 results from the fact that, in this
region, Smoluchowski’s theory of coagulation by binary collisions is limited by
stochastic behaviour. The reason for this is attributed to the homogeneity of the
dispersion at the fully dispersed initial condition, when all particles are identical
(Cohen 1992). Also, the fact that no portion of this curve lies in the Ao < 0 half-plane
indicates that equation (16) does not violate the second law anywhere. This is
because the form of equation (16) enables it to adjust to any range of widths (in
cluster size, i), from the infinitely narrow shape of the initial fully dispersed

distribution (N = 1), to the very wide, as N progressively becomes smaller. Thus, as
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we shall see shortly, it is the ability of a function to accommodate this variation of
distribution widths, while simultaneously satisfying the constraints of equations (4)
and (5), that determines whether it violates the second law or not.

(b) Application to the self-similar particle size distribution in brownian coagulation

We should mention that the relation between entropy and the self-similar
distribution in brownian coagulation has been investigated earlier by Rosen (1984).
Upon incorporating an expression analogous to the first summation appearing in our
equation (9), Rosen demonstrated how the second law can be used (in the context of
information theory) to obtain reasonable approximations for the self-similar
distribution. Our scope, however, differs in that we intend to use the second-law
principles, based exclusively on equation (9), to explore the limitations and
behaviours of particle-size distribution functions, in general.

For the case of brownian coagulation at later times (or when average cluster sizes
become large), we follow our notations and express Friedlander’s self-preserving
distribution as

N, = F%(&), (18)

where £ =iy =V, (19)
with y(§;) satisfying

f Ep(§)dg =1 (20)

and r Y(£)dE = 1. 21)

Equations (20) and (21), respectively, are the constraints of equations (4) and (5)
presented in Friedlander’s transformed coordinates.

Equation (18) suggests that the size distribution function, when the coagulation
process has sufficiently developed, achieves a self-preserving status, dependent only
on the size ratio, i/i,,., or Ni. The function ¢ (&,), which has been calculated both
numerically and asymptotically, is available in Friedlander & Wang (1966). Although
the limit of applicability of equation (18) is known to be N < 1, its exact bounds
remain to be identified.

To determine these bounds, we substitute equation (18) into (15). Before doing so,
however, it is essential that the summations be expressed as integrals because the
former equation is valid when the average cluster sizes are large. Hence, upon
incorporating equations (18) and (19), and utilizing Stirling’s approximation for
In (¢!), the summations in equation (9) reduce to

SN, In (V) +SN,In@!) = N2In (V) +¢;]+c,—In (V) —1, (22)

where we have used equations (4), (5), (20), and (21), and applied the necessary
transformations to convert the discrete sums to integrals. In the above

¢, = fo Yln(y)dé ~—1.00 and ¢, = foo Efrln (§)dE ~ 0.403, (23a,b)

both of which were calculated numerically from the information provided in
Friedlander & Wang (1966).
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Finally, substituting equation (22) into (15) and manipulating, we obtain Ao for
the self-similar distribution of Friedlander. This turns out to be

Ao = NIn[N(e*—1)]—N—1In (uN) —0.597. (24)

With the relationship between x and N given by equation (11b), equation (24) is
plotted as Ao versus N, and depicted by curve (ii) in figure 2. The direction of the
process is, once again from right to left, indicating coagulation

Obv1ously, the régime of validity of the self-preserving distribution, based on this
analysis, is between 0 < N < 0.133, which is where the curve lies in the positive
portion of the Ac—N plane. This is in contrast to the original work, and to all
subsequent ones, that provide only a qualitative range of apphcablh‘oy for equation
(18), that is N < 1. Also, the fact that curve (ii) crosses the (Ao = 0)-axis at N~ 0.133
indicates that at this particular value of N, the self-preserving coagulation mechanism
comes closest to displaying random behaviour.

It is necessary now to explain why this violation occurs because it is for similar
reasons that many proposed size distribution functions, theoretical and semi-
empirical, fail to satisfy the second law at some range of N. To do so, we refer to
equation (18) and recall that it expresses the particle size distribution at some time
after the coagulation process has sufficiently progressed. A characteristic of this
distribution function, which is portrayed graphically (and also tabulated) in
Friedlander & Wang (1866), is that its range in £ is infinite for any value of V. Thus,
this function cannot be adjusted to simulate the infinitely narrow shape of the fully
dispersed distribution at ¢ = 0 (or N = 1), which is precisely why its applicability does
not include N = 1 and its vicinity. In short, therefore, a size distribution function
fails to satisfy the second-law principle at a certain N if it cannot reproduce the
necessary range of size width without violating the conservation constraints of
equations (4) and (5) (or, in this case, equations (20) and (21)).

Regarding how the two curves approach one another in the small-NV limit, it
appears to be asymptotic. This is testimony to Hidy’s finding (Hidy 1965) that the
two limiting theories of coagulation come together at a certain time (or N).

As to the transition time, in terms of dimensionless time, ¢/f,, needed for
Smoluchowski’s solution to attain Friedlander’s form, Hidy calculated a value of
approximately 12 (Hidy 1965). Based on figure 2 of our work, however, N is roughly
on the order of 0.02, which, after implementing the relationship between N and ¢/t
in equation (17a), translates to t/t, ~ 50. The discrepancy between our predlctlon
and Hidy’s, which is by a factor of about 4, can be attributed to the fact that curve
(i) (based on equation (16)) does not incorporate the proper expression for the
coagulation frequency when particles of different sizes collide. Hidy’s numerical
computations, however, do. This should also explain why the two lines in figure 2 are
not closer to each other, as they ought to be, in the small-N limit. Allowing for the
proper coagulation frequency in our calculations would most probably narrow the
gap between the two curves, thereby yielding better agreement between our
transition time and Hidy’s. None the less, the overall results point to another
potential application of the method — to determine more systematically if two time-
dependent size distribution functions do ultimately approach one another asymp-
totically, and if so, at approximately what N (or time)?
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(¢) Application to some experimental size-distribution data in flowing systems

Of interest, also, is the application of this work to actual experimental data,
especially to determine their location on the Ac—N plane. The inset in figure 2
displays the results of two unrelated experiments on continuous flow of suspensions
of solid particles. The crosses belong to the sedimentation tests of Chen et al. (1991),
and the triangles refer to the continuous shear flow experiments of Graham & Bird
(1984).

We have selected these experiments specifically because the data were supplied in
terms of N,, thus eliminating the need for any empirical parameters at arriving at the
values of Ao. Obviously, judging from figure 2, all points lie in the positive portion
of Ac, further confirming the inequality relation of equation (15). In addition, the
proximity of many of the points to the (Ao = 0)-axis reflects the near-random
behaviour of the experimental data, a matter that has been discussed in more detail
in Cohen (1992).

(d) Application to particle size distributions arising from sequential fragmentation

Particles formed by crushing have, for some time, been known to follow the
Rosin—Rammler distribution (Rosin & Rammler 1934). Recently, however, a more
general distribution function suitable to sequential fragmentation was proposed
(Brown 1989). This function, which has the flexibility to also represent the
Rosin—Rammler, as well as many others, can be recast into

N, = KN*f(y,Kg,), (25a)
where for, KE) = (K&) exp[— (K& /(y+1)], (25b)

upon utilizing our nomenclature. In the above, & = Ni, as defined in equation (19),
and K is given by

K =K(y) = (y+ DV P T(2+7)/(1+7)), (26)

where I'(a) is the complete gamma function. By adjusting the only empirical
parameter, y, in equation (25), good fits with sequential fragmentation data collected
from a number of different physical processes, ranging from iron ground in ball mills
to stellar masses, were obtained (Brown 1989). In such processes, y lies between —1
and 0, where y & —1 signifies very few sequential fragmentation events, and as the
number of events increases, y approaches (),

Briefly, substituting equation (25b) into (25a), and the result into equati,on (15),
yields
' Ac = Nin (KN[e*— 1]) +Ney —In (uKN) + ¢, /K —1 (27)

for Brown’s distribution. In the above, ¢, and ¢, represent

€3 = Cy(y) = fofln ()d(KE and ¢, =c,(y) = fo [KElfIn (KE)A(KE) (284, b)

(with f = f(y, K§), coming from equation (25b)), both of which happen to be functions
of the adjustable parameter, y. Note the similarity between equations (27) and (24).

The parameters K(y), c,(y), and ¢,(y) were evaluated for several values of y <0
and substituted into equation (27), and the result is plotted in figure 3 as Ao against
N. The integrals leading to c¢,(y), and c,(y) were computed numerically.
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Figure 3. Ao against N, illustrating the regimes of validity of the size distribution function
represented by equation (25). The arrows mark the direction of the sequential fragmentation
process. The broken line, which is taken from figure 2, is the path of the self-preserving distribution
in brownian coagulation.

Figure 3 shows that corresponding to any v, there exists a unique curve that moves
from left to right. This direction indicates fragmentation. Moreover, each curve is
limited to a certain range of N, which can be extracted by simply considering the
region Ao = 0.

An immediate conclusion of this analysis is that as y decreases, the maximum
allowable N approaches unity (i.e. i,,, becomes smaller). Thereby, functions
characterized by smaller values of v can accommodate narrower particle size
distributions before they fail to exist (since the particle size distribution at N = 1 is
infinitely narrow). Moreover, the fact that none of the solid lines in figure 3 crosses
Ao = 0 at N = 1 indicates that, according to equation (25), continuous fragmentation
in a dispersion of clusters, at least for the range of v considered here, does not
guarantee a fully dispersed state at the end, even if the process carries on indefinitely
(represented by the case y = 0).

For comparison, figure 3 also includes the coagulation curve of Friedlander
(broken line), as it appears in figure 2. Interestingly, a value of v = 0 produces a good
fit for all N between the distributions of Brown & Friedlander. This implies that
sequential fragmentation characterized by y = 0 is entropically, and perhaps even
microscopically, similar to the binary coagulation process, except that it moves in
the opposite direction. This is not surprising because inserting ¥ = 0 into equations
(25) and (26) yields ‘

J(§) = exp (=£), (29)

which is identical to what has been obtained using the maximum entropy principle
(Rosen 1984). Hence, for y ranging between — 1 and 0, the closest that equation (25)
can get to mimicking the self-preserving distribution in brownian coagulation is
when y = 0.

4., Summary and conclusions

A number of distribution functions have, over the years, been proposed and
applied to describe size distributions of particles and particle clusters in dispersions.
What all of these have in common is that certain restrictions limit their régimes of
validity. To date, these régimes, if provided at all, have been expressed only
qualitatively. This is probably because, as far as we are aware, no systematic
approach for determining them has been made available in related literature.
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In this work, with the aid of a newly introduced property, a way to identify these
limitations is proposed. Since this property is closely related to the entropy of the
system, the approach then comes down to simply checking whether the function
violates the second law of thermodynamics; and if it does, where does the violation
oceur ?

Furthermore, by analysing the paths that time-dependent size distributions
traverse on the Ao—N plane, one can ascertain if such distribution functions do
approach one another asymptotically. To illustrate the notion, the two limiting size
distribution functions arising from Smoluchowski’s theory of coagulation were
chosen as examples.

In conclusion, the use of the proposed method appears to be relatively simple and
straightforward, as we have demonstrated here by applying it to a few well-known
size distribution functions. The approach is none the less general, and can be used to
find the limitations and test the validity of almost any particle size distribution
function of interest (possibly except for very wide ones, as discussed in the statement
following equation (7)), be it theoretical or empirical.
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