INVESTIGATION OF THE EFFECT OF SOLUTION DESTABILIZATION ON FLUX ENHANCEMENT IN FILTRATION

RUBEN D. COHEN

Department of Mechanical Engineering and Materials Science, Rice University, Houston, TX 77251 (U.S.A.)

(Received October 15, 1986; accepted in revised form December 18, 1986)

Summary

A simple model for the filtration of a destabilized colloidal suspension is proposed. It takes into account the effect of flocculation on the properties of the deposited layer. It is shown that the cake permeability is a function of the quantity $\omega t_{\rm R}$, where ω is the flocculation rate (collision frequency) and $t_{\rm R}$ is the residence time defined by the time from which the particle enters the membrane channel to the time that it attaches onto the membrane surface.

Introduction

According to the classical constant-pressure filtration theory, the rate of flux decline, $\partial v_w/\partial t$, at short times (i.e., while $\Delta v_w/v_w \ll 1$ so that the flux reduces linearly with time) is directly proportional to the solids volume fraction, ϕ , in the feed. The relation is given by

$$\lim_{t \to 0} \frac{\partial v_{\mathbf{w}}}{\partial t} = \frac{v_{\mathbf{w}}^2}{(1 - \epsilon)R_{\mathbf{m}}k_{\mathbf{f}}}\phi$$
(1)

where ϕ is proportional to the particle number density for a unimodal distribution, $v_{\rm w}$ is the solvent permeation velocity or the solvent flux per unit membrane area, ϵ is the effective cake porosity or void volume fraction, $R_{\rm m}$ is the membrane hydrodynamic resistance to flow, and $k_{\rm f}$ is the cake permeability. Disagreements, however, with the above-mentioned linear characteristic can be observed if the colloidal solution is destabilized in order to promote rapid colloid coagulation.

Figure 1 clearly identifies such a situation. Obtained from Cohen and Probstein [1], it represents a series of experiments carried out under identical flow, pressure, and temperature conditions, but different solution stability criteria. It should be mentioned that the ordinate of Figure 1, α , which is defined as the "specific transmembrane force", is directly related to the rate of flux decline, $\partial v_w/\partial t$ (see Ref. [1]). Here, the disagreement with eqn. (1) is clearly repre-