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In this paper the effects of the particle size and distribution of a population of hydraulic cement 
particles, and the rate of growth of the hydrating layer or coating surrounding the individual 
cement particles on reaction kinetics are presented. The shrinking core model is incorporated 
to yield a relationship between the volume percentage hydration and the initial particle size 
distribution. Subsequently, the coating growth velocity as a function of the hydrate layer 
thickness is deduced. 

1. Introduction 
The fineness (surface area) of hydraulic cement par- 
ticles is a useful parameter for proportioning mixtures 
of cements, mortars and concretes. It is a quantitative 
measure of the ratio of exposed surface area of a 
population of cement particles (usually in m 2) to that 
of a unit weight (usually in kg) of cement. 

Particle size distribution (PSD) is another import- 
ant physical parameter involved in the kinetics of 
hydration of cement. This parameter is independent 
of fineness, and cements of equal fineness can have 
different PSD characteristics [1]. PSD data are nor- 
mally presented in a graphical form called a number 
frequency histogram where the ordinate represents 
the number or population of the particles, and the 
abscissa represents the size of particles. In addition, 
cements similar in composition and fineness can 
possess different hydration characteristics if their 
PSDs are different. The use of PSD as a tool for 
mixture proportioning is usually only determined for 
research purposes [2]. 

Although the importance of the roles of fineness 
and PSD in hydration has been established, there is 
limited quantitative work done on correlating them 
with hydration kinetics. To the best of the knowledge 
of the authors, it was Gronau [3] who first published 
a paper in 1967 in which he correlated PSD and 
hydration in portland cements. The importance of 
PSD was again stressed in 1968 by Taplin [4]. Kondo 
and Ueda [5] assumed a monomodal PSD to simplify 
derivation of a mathematical model dealing with 
hydration of tri-calcium silicates (C3S)*. This model 
was later expanded and modified by Pommersheim 
and co-workers [6, 7]. Both of these models considered 
particle size, thickness of the hydrate layer (coating), 
and diffusivities through the coating. They also 
regarded the coating as consisting of a three-layer 
system; inner, middle, and outer. Bezjak and Jelenic 

* Cement chemistry abbreviation: C = CaO, S = SiO 2. 

[8] and Bezjak [9] developed a model to determine rate 
constants of polysize cement particles, specifically 
C3 S. In their model they claimed that particles belong- 
ing to different size groups follow different rate laws 
during hydration. Thus, different rate laws are involved 
simultaneously in the overall degree of hydration. 
Brown et al. [10] in deriving their model assumed that 
the reduction of C3S particle surface area during 
hydration does not influence its hydration kinetics. In 
his paper, Knudsen [11] perceived the existence of an 
interconnection between cumulative PSD and the 
hydration-time plot for cements. His conclusion was 
that weight distributions that follow exponential 
behaviour have their cumulative PSDs related to the 
hydration-time curve by a constant that possesses the 
dimensions of length per unit time (velocity). 

The objective of this paper is to derive a quan- 
titative explanation of the kinetics of depletion (a 
measure of reaction and hydration kinetics) of a popu- 
lation of cement particles in time. Based on Gronau's 
concept of the shrinking core [3], a rigorous derivation 
of the theoretical hydration to account for a gener- 
alized PSD shall be presented. Following this, a corre- 
lation between theoretical and experimental hydration 
(~) is given which will eventually lead to a relationship 
between velocity of growth of the hydrate or coating 
layer and the layer thickness itself. This can offer a 
valuable tool for identifying different mechanisms that 
could be involved during hydration. 

Several points should be stressed regarding the 
assumptions. First, the coating consists of one hom- 
ogeneous layer, unlike the three layers considered in 
earlier models [5-7]. This assumption is incorporated 
in order to limit the number of parameters and to 
simplify derivation of the model. Second, the mode of 
reaction is independent of the initial particle size and 
the interdependence of particle size and hydration rate 
laws [8, 9] is not dealt with directly. However, the 
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interdependence can be deduced from mathematical 
and graphical presentations. In other words, although 
in the model the coating growth velocity for individual 
particles, regardless of their size, is assumed similar 
throughout hydration, the reaction kinetics for vary- 
ing particle sizes can be advanced from the work 
presented herein. 

2. Mathematical modelling 
In accordance with the shrinking core model, we shall 
take the individual cement particle to be spherical, 
and whose radius, r, constantly decreases in time, t, 
until the ,core disappears (Fig. 1). The rate of reduc- 
tion in core size shall be denoted by v and given by 

v = -Or(t) /Ot (1) 

which has the units of length over time (velocity). 
Furthermore, assume that v is a function of coating or 
hydrate layer thickness only and entirely independent 
of the instantaneous size of the particle core. Subse- 
quently, v wiI1 be a function of time only, independent 
of r, and thereby shall be designated by v(t). 

Due to the reduction of the particle core size in time, 
the core size distribution function (PSD) is also time- 
dependent. The core size PSD function, n(r, t), shall be 
defined to satisfy the following relation: 

dN(r, t) = n(r, t )dr (2) 

where dN(r, t) is the number of particle cores at time 
t whose radii fall between r and r + dr. Equation 2 is 
therefore integrated to give the instantaneous total 
number of particle cores at time t in the system 

= f : n ( r ,  t)dr (3) N(t)  

The expression for the total number of cores at time 
t = 0 can therefore be obtained from Equation 3, 

No -- N(0) = f :  no(r) dr (4) 
where 

no(r) - n(r, 0) (5) 

is the known initial PSD. 
An important result deduced from the assumption 

imposed on the core size reduction rate, v(t), i.e. that 
it is entirely dependent upon time only and indepen- 
dent of the instantaneous core size, is sketched in 
Fig. 2. Due to this particular behaviour, the size distri- 
bution is shown to move to the left with a wave speed 
equal to v(t) while the characteristic shape remains 
unchanged. As a consequence, by following a specified 
set of particles in time, 

n(r , t )  = n(r + Ar, t + At) (6) 

" ~  r(  t ) 

Figure 1 Coating growth model. 
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Figure 2 Characteristic behaviour of PSD, n(r, t), with time, t. 

In differential form, Equation 6 becomes 

dn = 0 = -~ dt + ~r dr (7) 

which upon rearrangement and using the expression 
for &/Ot obtained from Equation 1 results in the 
partial differential equation 

On v ( t ) ( O n )  
8 - 7 -  ~ = 0 (8) 

whose solution acquires the form 

n(r , t )  = n[r + x(t)] 0 <~ x(t) < ~ (9) 

where x(t) is the coating thickness expressed by 

x(t) - fo v(z)dv (10) 

The initial condition is simply the PSD, n0(r), given at 
time t = 0 and which is assumed to be known. 

Substitution of Equation 9 into Equation 3 gives the 
time-dependent core population 

N(t)  = f ? n [ r  + x(t)]dr (11) 

which after a change in the frame of reference becomes 

N[x(t)] = f ;  n(z )dz  (12) 

where 
z - r + x ( t )  (t3) 

The wave-like nature of the problem implies 

for 0 ~< r = z < oo (14) n(z) = no(r) 

so that 

U[x(t)] = I ~ no(r)dr 0 <<. x(t) < ~ (15) 

which indicates that, under the imposed assumptions, 
the core population, N(t), can be calculated given the 
initial size distribution, n0(r), and the size reduction 
rate v(t). 

In addition, the volume percentage hydration, ~ a 
parameter of more practical importance than the 
number density, can also be calculated. By definition, 

is the percentage volume reacted. Analytically it is 
expressible by 

~( t )  = 1 v ( t )  
Vo 

~o n(r, t) r 3 dr 
1 

vo 
(16) 
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where V0 is the total volume at t = 0 and equal to 
no(r) r3 dr. 

With n(r, t) given by Equation 9, Equation 16 
therefore assumes the form 

~(t) = 1 - J0-n[r + x(t)]r3dr (17) 
~ o o  

v0 
which after a coordinate transformation becomes 

~[x(t)] = 1 -- ix- n°(z)(z -- x)3dz (18) 
v0 

where z is defined in Equation 13 and no(z) is the initial 
PSD. 

In terms of the weight distribution, W0(r), where 
Wo(r) = no(r)//Vo, Equation 18 can be rewritten as 

assuming that the unreacted cement density is uniform 
over all cores. Equation 19 suggests that indeed, as 
expected, a relationship does exist between ~ and the 
initial weight distribution function, W0(r). 

This brings attention to the work of Knudsen [11]. 
There the total hydration, ~i(x), with subscript i 
corresponding to the order of reaction, is given by 
(Equation 6 in Knudsen [11]) 

= f :  ~i(x, r) Wo(r)dr (20) (xi(x) 

where ~(x, r) denotes the hydration of a single par- 
ticle core having instantaneous radius r. Equation 20 
represents an averaging of the local or single-particle 
hydration over the weight distribution. It should be 
mentioned that parameters x and W0(r) have been 
substituted for kt and W(r), respectively, of Equation 
6 in [11] in order to comply with the nomenclature 
associated with this paper. 

Following Taplin [4] and Kondo and Ueda [5], the 
local hydration reaction kinetics is given by 

cq(x,r) = 1 - ( 1 - x )  3 (21) 

Substitution of Equation 21 into Equation 20, drop- 
ping the subscript 1, and by definition letting 

o0 

S0 W0(r)dr = 1 leads to 

:z(x) : 1 -- f :  W0(r)(l - X ) 3 d r  (22) 

which represents linear kinetics hydration based on 
Knudsen's averaging technique. 

Comparison of the above with the more rigorously 
obtained Equation 19 shows that the lower limit of the 
integral in Equation 22 is different. This is merely due 
to the fact that the averaging scheme proposed by 
Knudsen does not account for the change of PSD with 
time. The similarity of the integrands of Equations 19 
and 22, however, implies that the present work repre- 
sents a more detailed development of the hydration 
equation of a cement with generalized PSD. The step 
by step derivation also provides an insight to the 
mechanics of the shrinking core model as applied to 
the reaction kinetics. Application of the model to 
actual distributions is carried out in the next section. 
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Figure 3 Theoretical ~(x) for Specimen 3 of Kondo and Ueda [5]. 

3. A p p l i c a t i o n s  t o  a c t u a l  d i s t r i b u t i o n s  
Equation 19 leads to the calculation of instantaneous 
hydration as a function of the coating thickness, x, 
following the shrinking core assumption. Accord- 
ingly, should analytical or numerical expressions of 
W0(r) be available for a specific cement, ~(x) can then 
be calculated either analytically or by numerical inte- 
gration of Equation 19. In other words, ~(x) is obtain- 
able for any distribution provided that W0(r) is 
known. Fig. 3 illustrates an example of such a calcula- 
tion performed on the uniformly distributed data of 
Kondo and Ueda [5] for their Specimen 3. 

Furthermore, Fig. 4 illustrates the experimentally 
obtained hydration against time curve for the same 
cement (Specimen 3 of Kondo and Ueda [5]). With 
theoretical ~(x) from Equation 19 and experimental 
~(t) pertaining to the same cement sample available, 
the two graphs can then be matched and reduced to a 
single plot of x against t, representing the coating 
thickness as a function of time. Subsequently, the 
coating growth velocity, v, can be computed by dif- 
ferentiating x with respect to t. From this one can 
therefore deduce the behaviour of v against x. In 
summary, for a given initial weight distribution func- 
tion, W0(r), and experimental hydration-time plot, 
~(t), belonging to a cement specimen, the coating 
growth velocity as a function of coating thickness can 
be calculated. 

The procedure described above was applied to the 
data of Kondo and Ueda [5] and Knudsen [11]. The 
relatively narrow particle size range of Kondo and 
Ueda's specimens (2 to 5 and 5 to 8 #m) has been 
assumed to be uniform in distribution, thereby allow- 
ing analytical evaluation of Equation 19. Fig. 3, which 
is included as an example, is a result of the calculation 
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Figure 4 Experimental ~(t) for Specimen 3 of Kondo and Ueda [5]. 
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Figure. 5 v against x for (O) Specimen 1, (~) Speci- 
men 2 and Ok) Specimen 3 of Kondo and Ueda [5]. 

performed on Specimen 3 of Kondo and Ueda [5]. 
Knudsen's data, however, was comprised of Portland 
cement characterized by 

B C  
- -  (e -B' - e -cr) (23) Wo(r) = B -  C 

where B = 0°0595 and C = 1.28 [11]. Analytical 
evaluation of Equation 19 involving W0(r ) given 
above can be expressed in terms of the exponential 
integral series. Here, however, numerical integration 
using Simpson's rule was employed to give ~(x). 

With experimental c~(t) available for both data sets 
(see for example Fig. 4) it was then possible, by 
graphical correlation of e(x) and c~(t), to compute x 
against t from which v against x was calculated by 

numerical differentiation. Final results are illustrated 
in Figs 5 and 6 for Kondo and Ueda [5] and Knudsen 
[11], respectively, and are discussed in the next section. 

4. D i s c u s s i o n  o f  r e s u l t s  
The developed technique has been applied to hydra- 
tion data obtained from the literature [5, 11], and the 
results appear in Figs 5 and 6. Fig° 5 represents v 
against x for the three specimens of Kondo and Ueda 
[5] listed in Table I. 

Interestingly, all three samples possess similar behav- 
iours in that the layer growth velocity varies over a 
range of approximately three orders of magnitude. In 
addition, all three curves are characterized by two 
distinct modes of hydrate layer growth separated by 
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Figure 6 v against x computed 
from Knudsen's data [11]. 
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T A B L E  I Specimens of Kondo and Ueda [5] 

Specimen No. Type Size range (/~m) Water/cement ratio 

1 C3S 2 to 5 1.0 
2 C~S 2 to 5 0.5 
3 C3S 5 to 8 0.5 

a maximum that occurs at a coating thickness of 
approximately 0.08 #m and a coating growth velocity 
of 0.04#mh -1, corresponding to about 8h of 
reaction. It is also evident that the initial stage of 
hydration reaction (before 8 h) is an "accelerating 
mode" where velocity increases with increasing thick- 
ness, and since all points effectively lie on one line, it 
can be argued that this regime is independent of the 
initial PSD and water/cement ratio. The "decelerating 
mode" also appearing to be independent of the initial 
PSD and water/cement ratio, follows after 8 h and is 
seen to be governed by the following empirical relation 

v(x) = A x  s (24) 

where constants A and s are approximately equal to 
5.74 x 10 .4 and 1.66, respectively. 

On the other hand, Fig. 6 which represents Knud- 
sen's data leads to a different finding. Here it is seen 
that the coating growth velocity changes by a factor of 
about 4 while the variation in the coating thickness 
covers almost two orders of magnitude. This, there- 
fore, deems velocity to be almost constant (indepen- 
dent of x) with a mean value of about 0.07 #m h-1. 

5. Conclusion 
It was shown that under the given conditions of reac- 
tion kinetics, cement hydration can be visualized as 
being the movement of the PSD curve to the left with 
its characteristic shape remaining unchanged. The 
wave speed with which this occurs is essentially the 
velocity of hydrate layer or coating growth. The 
model, in effect, signifies the importance of using the 
initial PSD to characterize cements hydration kinetics. 

Graphical matching of theoretical hydration (given 
in terms of coating thickness, x) and experimental 
hydration (given in terms of time, t) allows one to 
compute the hydrate layer thickness as a function of 
time. This, subsequently, leads to a more useful plot 
relating growth velocity, v, to coating thickness, x. 
The plot enables one to determine the effect of coating 
thickness on the speed of hydration, and also to distin- 
guish regions of abrupt changes in hydration behav- 
iour (as evidenced by the maximum in Fig. 5). 

Application of the model to actual cement hydra- 
tion data led to Figs 5 and 6. At this stage, due to the 
lack of more data, only a qualitative explanation of 
cement hydration in terms of v against x was presen- 
ted. More conclusive results can be achieved only 
through further data collections and analyses. 
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