307

An Investigation of the Combustion of Pulverized Coal-Air Mixture in Different Combustor Geometries

CHING-CHINA JI

Department of System Engineering, Chung Cheng Institute of Technology, Ta-Hsi, Tao-Yuan, Taiwan, Republic of China 33509.

and

RUBEN D. COHEN*

Department of Mechanical Engineering and Materials Science, Rice University, Houston, TX 77251-1892

A two-dimensional theoretical study of the flow and combustion of pulverized coal by diffusion flames is presented. The model predicts gas flows, species concentrations, and temperatures in combustors having specific geometries. The conservation equations are solved utilizing the $\kappa - \epsilon$ turbulence model. Coal devolatilization is modeled by the two-competing-reactions scheme, which generates two sets of volatiles and char, each by a specific rate constant, described in Arrhenius form. Char combustion from devolatilization occurs by reaction with oxygen, carbon dioxide, water, particle dispersion, and radiative heat transfer between furnace wall and particles. The model is used to investigate the interaction between flow and combustion in flames produced by arranging the locations of the primary inlet and the secondary air inlets in a furnace. The predictions, which could be valuable for designing furnaces, indicate that a centered primary inlet and a minimum recirculation are some of the criteria that could favorable for combustion.

ñ

NOMENCLATURE

			cles per unit spatial volume)
A	area	Nu	Nusselt number
В	preexponential factor	P	pressure
С	coefficient, empirical constant	q	heat transfer rate
C_p	specific heat capacity	r	radius
D	drag force	R _u	universal gas constant
D	diffusion coefficient	Red	Reynolds number based on particle
Ê	activation energy		diameter
F	view factor	S	burning surface, source or sink
G	generation of turbulent kinetic en-	t	time
	ergy	Т	temperature
h	heat transfer coefficient for a parti-	U	velocity in the x direction
	cle of size d_p	V	velocity in the y direction
H	enthalpy	V	velocity vector
J	mechanical equivalent of heat (1	W	source or sink term
12	Cal = 4.186 Js)	X	coordinate
K	thermal conductivity, specific reac-	у	coordinate
	tion rate constant	Y	mass fraction of species
Le	Lewis number $(=K/C_p D_p)$		
M	mass	Greek S	vmbols

ρ	density			
φ	porosity	(void	volume/total	vol
	ume)			

number density (number of parti-

Copyright © 1992 by The Combustion Institute Published by Elsevier Science Publishing Co., Inc.

^{*} Corresponding author.