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on Figure 1 is the true process value. The “measurement” 
can be described as a second-order autoregressive inte- 
grated moving average (ARIMA) (MacGregor, 1988) with 
superimposed step and ramp changes. 

The line labeled “filtered process variable” is the filtered 
value calculated by the self-tuning filter (M = 5) with E,, 
= 4 units. A t  the bottom of the graph are curves that 
indicate the standard deviation of the process variable as 
calculated by (15) and the filter time constant as calculated 
by (18). Occasionally events cause 7f to be extremely large, 
so there is a ceiling on 7f of 50T for visual graphical con- 
venience. Note that the estimated opv is close to either the 
true 8 units or 2 units in spite of the presence of autore- 
gressive drift, ramp, and step changes. Note that the filter 
time constant changes only in response to process variance 
in spite of the other transient effects. (While the period 
from the 1st through the 300th sample was intended to 
have a standard deviation of 8 units, the confluence of 
random numbers a t  the 20th sample caused large mea- 
surement deviations that the self-tuning filter detected. 
I t  adjusted accordingly.) 

Note that the “filtered process variable” curve lags be- 
hind the “actual” process variable. This is an expected 
effect of the first-order filter. Also note that where the 
process variance is high the lag is greater than when the 
process variance is low. This is the desired effect of the 
self-tuning filter. A t  low process variance, the filter time 
constant is low and the filtered value is responsive to 
process changes. A t  high process variance the filter time 
constant is high and uses more data to obtain the average. 
At all cases the 95% confidence interval, E,,, was 4 units. 

Conclusion and Critique 
A method for automatic adaptation of a time constant 

for a first-order filter has been developed by use of ele- 

mentary statistical concepts. Toward developing an easy 
to implement and computationally inexpensive method, 
the author has incorporated simplifications grounded in 
this experience. The method has been demonstrated on 
a wide range of simulated conditions and has two advan- 
tages over standard practice. First, the user specifies the 
desired 95% confidence interval for the filtered value in- 
stead of a secondary parameter, the filter time constant. 
Second, the method automatically adjusts the filter time 
constant as the process variability changes to minimize 
filter lag while maintaining the desired accuracy. 

The method assumes that the sampling period is small 
in comparison to real changes in either process level or 
variability and that the noise is a random Gaussian fluc- 
tuation with a mean of zero. 
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Effect of Turbulence Damping on the Steady-State Drop Size 
Distribution in Stirred Liquid-Liquid Dispersions 

With the help of a recent model for the drop size distribution in stirred liquid-liquid dispersions, 
the effects of turbulence damping and coalescence, individually, on the characteristic drop sizes are 
investigated. The outcome of this work, which is based on an unstable dispersion where both 
coalescence and breakup occur simultaneously due to mixing, lead us to conclude that drop sizes 
in such systems are predominantly governed by turbulence damping, with coalescence playing an 
indirect role. 

Introduction 
A simple model for predicting the steady-state drop sizes 

in stirred systems has been recently proposed (Cohen, 
1990). The approach considers a large number of drops 
dispersed in a continuous fluid being stirred rapidly. Due 
to stirring, the drops continually coalesce and break up, 
and as a result, a steady-state drop size distribution is 
observed after a period of time. 

Everyone of these drops is assumed to be composed of 
a certain number of primary droplets, each having a di- 
ameter, dmin, where the subscript min refers to “minimum”. 
Thus, the primary droplets are the smallest units that exist 
in the dispersion. In relation to the theory proposed by 
Hinze (1955), it is important to note that dmin is the most 
stable droplet size detemined by the Weber number, We, 
and the dispersed-phase volume fraction or holdup, r p  
(Godfrey et al., 1989 and references within). We may 
consequently assume that for a given We and 4, any 
droplet larger than dmin could break down to form smaller 
droplets, while the minimum droplet size in the dispersion 

remains fixed at  dmin. Very briefly, therefore, the model 
is based on the assumption that (1) drops larger than dmin 
result from the coalescence of smaller droplets, or the 
breakup of larger drops, and (2) while the primary droplets 
of size dmh can coalesce to form larger drops, they cannot 
break down to form smaller droplets. 

Avoiding the details of the derivation, the Sauter mean 
diameter, d32, of the drops in the suspension is shown to 
be given by (Cohen, 1990) 

d32/d,in Z1J3 (1) 
where 

and 
2 = In No - In (In No - In In No) (2) 

(3) 

Note that No is simply the total number of the primary 
droplets in the suspension having volume V, should the 
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