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A combinatorial approach for predicting the steady-state agglomerate or drop-size distribution in batch suspen-
sions undergoing intense stirring is proposed. The model accounts for the fact that both coagulation and break-
up could occur simultaneously owing to agitation. Overall, considering its simplicity and the fact that it lacks any
adjustable parameters, the results of the model compare favourably with experiment.

Owing to its widespread use in the chemical engineering field,
the area of coagulation of fine particles or coalescence of
liquid droplets has received considerable attention during the
past few decades. At present there exists a vast amount of
theoretical and experimental literature related to this area.
The first and foremost is Smoluchowski’s pioneering theory
which provides a detailed, yet relatively simple explanation
describing the kinetics of coagulation. This work was later
expanded to include the effects of surface interactions and
hydrodynamics on the rate of coagulation.

In conjunction with the numerous studies concerning co-
agulation and coalescence, there is an extensive literature on
fragmentation [ref. (1) and (2) and references therein]. As it is
basically the reverse of coagulation, fragmentation involves a
time analysis of the break-up of a larger aggregate or drop
into smaller fragments.

In a system where only coagulation occurs, it is expected in
theory that all particles eventually form one large cluster. On
the other hand, fragmentation involves a continuous break-
up of the initial aggregate until ultimately a monodisperse
suspension, consisting only of the primary partictes, is
attained. In most practical situations, however, the two pro-
cesses often act simultaneously to produce a suspension
in which a large number of aggregates coexist at any instant
of time, thereby leading to a specific transient size distribu-
tion. Interestingly, experiments show that after a relatively
long time, the size distribution becomes independent of time.
This occurs when the rate of coagulation equals that of
break-up.

Coagulation and fragmentation can occur simultaneously
owing to any kind of stirring or agitation. Agitation of the
lowest intensity generally lies in the thermal regime and its
corresponding energy is given by kg T, where ky is Boltz-
mann’s constant and T is the absolute temperature. This
yields an equilibrium size distribution that is primarily gov-
erned by the DLVO surface potential for colloidal par-
ticles.>* On the other hand, surface interaction loses is
influence on equilibrium once stirring is intensified, i.e. by
mechanical means. Here the relative velocities and the fluctu-
ating forces which cause coagulation and fragmentation to
occur simultaneously, are brought about by the mechanically
induced turbulence of the surrounding fluid.

Previous models for calculating steady-state size and
weight distributions in batch suspensions undergoing both
coagulation and break-up have typically been semi-
empirical.>® The models, in many cases, go through very
detailed numerical solutions of a population balance equa-
tion coupled with some type of fragmentation kinetics to
yield the time-dependent size distributions. Carrying out
these calculations to very long times ultimately yields the
steady-state aggregate or drop-size distributions. These
models generally tend to possess a number of empirical

parameters which have to be determined by experiments.

The primary objective of this work is to introduce an alter-
native approach for predicting the equilibrium or steady-state
agglomerate or drop-size distribution in suspensions under-
going intense stirring. The main strength of this method, for
which the derivation follows in the next section, is that it is
relatively simple and requires no adjustable or empirical
parameters.

Model Development

Consider a dilute monodisperse suspension containing N,
primary colloidal particles each having a diameter equal to
d..in- These particles may either be solid or liquid droplets,
and could very well be initially present in agglomerated or
coalesced states. Intense mechanical stirring of the system
causes certain agglomerates to break up and others to coagu-
late (or coalesce) simultaneously. Consequently, after a rela-
tively long period of time, the system achieves equilibrium
where a certain steady-state or time-independent agglomerate
size distribution persists throughout the suspension. Experi-
meits have showi that this final distribution is independent
of the initial state, i.e. whether or not the primary particles
were agglomerated before onset of mixing.” Moreover, since
the intense agitation would overshadow all energetics such as
the DLVO interactions, then the final result would be an
equilibrium condition independent of the energy state and
determinable primarily by the combinatoric arguments
described below.

The approach considered here is based on the assumption
that after a sufficiently long period of time, all possible
arrangements or groupings among the primary particles in
the closed system can be achieved owing to isotropic stirring;
in other words, the size distribution at steady state fluctuates
equally between all possible states or groups. Fig. 1, for
example, illustrates how four primary particles (N, = 4) can
be arranged in groups belonging to five different categories
(A-E). It should be emphasized that different possible con-
figurations, i.e. cluster shapes, are assumed not to play an
important role here.

Category A, which represents one arrangement, is a sus-
pension that consists of four uncoagulated primary particles.
Another possible grouping is category B in which the suspen-
sion contains two dimers. Since the particles are ‘numbered’,
we find that the system can acquire this arrangement in three
distinguishable ways. Category C is another probable group-
ing which contains a triplet and a primary particle. This can
be achieved in four different ways. Category D, containing
two separate primary particles and one dimer, can be
achieved in six distinguishable ways. Finally, category E,
which represents a suspension in which all particles have
coagulated to form one cluster, is achievable in only one way.
By the above reasoning, therefore, we note that since the
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Fig. 1. Possible distinguishable groupings of four numbered primary
particles.

occurrence of each distinguishable grouping in the categories
mentioned is equally probable (neglecting energy and con-
figurational effects), the steady state in a well mixed closed
system containing four primary particles is capable of fluctu-
ating between a total of 15 possible arrangements.

A more general, yet practical approach to this problem
would be to introduce the degeneracy, (N,, N,, N;, ...,
N, ), as being the number of the distinguishable arrange-
ments belonging to a certain grouping or category that the
numbered primary particles can form. Here N, is the number
of unattached or separate primary particles, N, is the number

——of dimers, N, is the mumber of aggtomerates or drops con=

taining three primary particles, and so on, all of them
coexisting at any given instance of time in the suspension.
Applying this to the case considered in fig. 1, the degeneracies
for the groupings in categories A-E are, therefore, 1, 3, 4, 6
and 1, respectively.

Although derivation of the general form for the degeneracy
(for any N,) as applied to this situation is straightforward, it
is nonetheless quite involved and lengthy, and therefore will
not be presented here. Using combinatorics, however, we can
show that

No!

Ny, N;, N3, ...,N, )= (1)

Imax

IEAGK
i=1

where i is the agglomerate size (in terms of number of
primary particles) and i, is the size of the largest agglomer-
ates that exist in the suspension. Although a more detailed
discussion concerning the magnitude of i_,,, appears later, we
begin the analysis by assuming that

NO > imax > 1 (2)

Eqn (1) is, of course, constrained by the number conservation,
given by
max
No= Y iN;. 3)
i=1
We must, in addition, note that although all of the group-
ings included in eqn (1) are indeed attainable, the probability
of occurrence of a number of them, as determined by their
degeneracies, would be less than others. In fig. 1, for example,
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observing the system over a long period of time suggests that
the state comprising a distribution of N, uncoagulated
primary particles (category A, Q = 1) occurs much less fre-
quently than that containing two separate primary particles
and one dimer (category D, Q = 6). Consequently, there
should in general exist a most probable size distribution for
any N, greater than 2.

Returning now to eqn (1) and the subsequent restriction
imposed by eqn (3), the next appropriate step is to obtain the
most probable distribution of interest. In reference to the sta-
tistical mechanics literature, this is generally accomplished by
means of Lagrange multipliers which can be used to extrem-
ize eqn (1) while satisfying eqn (3). We therefore express this
as
5 imax

dln Q )
ON; ON; &

iN; =0 @

where A is the yet unknown Lagrange multiplier. Moreover,
from eqn (1)

InQ=InNy!— Y(N;Ini!+1In N, ©)

i=1

and after assuming that large numbers of any agglomerate or
drop size are present, i.e.

N;»1 (6)

then the Stirling approximation for In N; ! can be implemen-
ted.® Substituting the approximation into eqn (5), taking the
derivative with respect to N;, and inserting the final result
into eqn (4), we obtain the most probable size distribution.
Denoting this as 47, the result is

_exp(di) _ z

A N @

where for simplicity and convenience, the unknown exp 4 has
been replaced by the single parameter Z. The value of Z can
be readily calculated upon substituting eqn (7) into eqn (3).
This gives

imax lZl
Ny = Z Ty (®)
i=1 b
which can also be expressed as
No=2Z 2 sz 9
0T Toez & it

Assuming (which will be shown later to be quite reasonable)

imax > Z > 1 (10)
eqn (9) approaches

0
NO;ZEE(CXPZ_I)

=ZexpZ (11)

by virtue of the fact that the series in eqn (9) approximately

represents the Taylor expansion of (exp Z — 1) under the ,

condition specified by eqn (10).

For N, large compared to 1, i.e. N, > 10, which is typical
of suspensions, one can solve eqn (11) for Z explicitly in terms
of N, . It follows that

lim Z =~ In Ny — In(ln Ny — In In Ny). (12)

No>»1
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Fig. 2. Theoretical number of clusters, .4, vs. total number of primary
particles, N, in the suspension.

Two important parameters that are generally used in
classifying agglomerates are the size and weight distribution
functions, P(i) and W(i), respectively. For a given distribution
N;, these are defined as®

Pi) = o (13
2N
and
W) = % (14)

Substitution of the most probable distribution, .4";, from eqn
(7) into eqn (13) and (14), therefore yields the most probable
size and weight distribution functions, 2(j) and #7(i), respect-
tvely. Consequently,

N

Pi) = -

Imax

S
i=1
which, by virtue of eqn (7), is just

ZYi!

Imax

pedt

We should emphasize that the denominator of eqn (15) is the
most probable total number of aggregates, .4°, at steady
state. Therefore, based on a previous argument that exp Z
> 1, we get

2(i) = (15)

N =exp Z.

This is illustrated in fig. 2 as A" vs. N, (total number of
primary particles or droplets). It is rather interesting to
observe that over the wide range indicated, .4 generally falls
below N, by a factor of about one order of magnitude.

It also follows that the most probable size distribution

Zi
P(i) = exp{—2Z) m (16)

which is the Poisson distribution. Fig. 3 displays the behav-
iour of 2(i) vs. i as N, varies over several orders of magni-
tude.
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Fig. 3. Theoretical size distribution function, 2, vs. cluster size, i. N,:
(a) 105, (b) 107, (c) 10°.

Moreover, the most probable weight distribution function,
#(i), can be written as

i, iz

W) = -
O=N, “ w0

after inserting eqn (7) into (14). The above can be simplified
further to yield
Zi -1
W) = 7)) — =
()= exp(~2) 7,

after substituting eqn (11) into the equation preceding (17).
Interestingly, eqn (17) implies that the weight distribution
curve is identical in shape to the size distribution but shifted
to the right by one unit.

For coalescence, hawever, we may consider the smallest
dreplets (diameter d,; ) to be the primary particles: The result
is that fig. 3 can be displayed in terms of the diameter ratio,
where

Pi—1) a7

diameter ratio = d/d,,, = i'/? (18)

(d is the drop diameter) instead of the number of unit primary
droplets, i, in a given drop of size i. This is illustrated in fig. 4.
Altogether, we conclude the following:

1. All curves possess distinct maxima at some value of
i=¢. This can be calculated by extremizing eqn (16) with
respect to i. Using the Stirling approximation for In i!, it can
be shown that (i) has a maximum at ca.

c=27Z. (19)
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Fig. 4. Theoretical size distribution function, 2, vs. drop diameter
ratio, d/d,;.. N,: (a) 10, (b) 107, (c) 10°.
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Accordingly, in terms of the diameter ratio for coalescence,
the maximum occurs at some diameter ratio, &/d;,, given
by

=B =713 (20)
min
by virtue of eqn (18) and (19).

2. In reference to fig. 3 and 4, a decrease in N, shifts the &
curves towards smaller agglomerate or drop sizes, whereas an
increase causes them to become wider and lower in height.
Furthermore, whereas a plot of £ against i, as shown in fig. 3,
is quite symmetric, # vs. d/d,,;, exhibits a certain degree of
asymmetry leaning towards smaller diameter ratios.

3. Since .4, is supposed to be an integer for any value of i,
it would therefore be reasonable to define the maximum drop
size, i, , by letting

* "max?

N~ @1)

Substituting this result into eqn (7) yields

v ol Zimlx
T !

22

from which, by virtue of the Stirling approximation for
Ini_,, !, we obtain

i, =eZ~2T2Z 23)

where Z is given by eqn (12). Note that since Z is of the order
of 15 for very large N,, then the above provides reasonable
justification for the assumption presented in eqn (10). In
terms of the maximum drop diameter, d,,,,, in the system, we
therefore obtain the ratio

Z;'“f = (eZ)'/* ~ 1.40Z"3, (24)
model, a maximum drop diameter ratio characterized only by
the distribution controlling parameter, Z, can be calculated.
In relation to works conducted on coalescing systems, the
diameter of the primary drop, d,;,, is predominantly gov-
erned by surface tension, turbulence intensity, and other flow-
related factors.!® As a result, eqn (24) implies that the
maximum drop diameter, d,,,, would, in addition to the
above-mentioned factors, be also affected by N,, although
the influence is rather weak. Furthermore, eqn (24) suggests
that all drops should lie within a relatively narrow range of
diameter ratio given by

1< < 140Z'83 25)

4. Eliminating d_;, by combining eqn (20) and (24) gives
the following

ad - 1/3
= <lf ) = exp(—1/3) ~ 0.72 (26)

which implies that the ratio Z/d,,, is virtually a constant,
independent of all other variables.

5. In compliance with the parameters used here, the Sauter
mean diameter, d5,, can be expressed as

i)
2o @
min Y i2Ba()

i=1

.

s

where (i) is obtained from eqn (16). Eqn (27) was solved
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Table 1. Comparison of the two characteristic diameters, # and d,,

No - 2/
10°® 2.104 2.127
108 2.251 2271
107 2.383 2.400
108 2.503 2.517
10° 2614 2.626

numerically for certain values of N, and the results, along
with «/d,,, obtained from eqn (20), are presented in table 1.
In reference to the numbers given in table 1, we are there-
fore, able to conclude that d;, and  are very close to each
other so that the Sauter mean diameter ratio can be approx-
imately represented by

dy, 4
e P A 28
dmin dmin ( )

in accordance with eqn (20).

6. In terms of the given parameters, the cumulative volume
fraction, V, and the cumulative number fraction, n, can be
written as

Vi) = ¥ #0) (29a)

n(i) = Y, 2()) (29b)
j=1

where j is just a dummy variable, and £(j) and #7(j) come

from eqn (16) and (17), respectively. Fig. 5 and 6, respectively,

depict V as a function of the cluster size, i and diameter

ratio, d/d,,;,. In this respect, it is useful to note that V = 0.5

corresponds approximately to «/d.;,, and therefore to

oy
°
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Fig. 5. Theoretical cumulative volume fraction, V, vs. cluster size, i.
No:(a) 105, (b) 107, (c) 10°.
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Fig. 6. Theoretical cumulative volume fraction, V, vs. drop diameter
ratio, d/d,;, . Ny: (a) 105, (b) 107 , (c) 10°.
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d3/d s by virtue of eqn (28). Also, owing to eqn (17), n(i) and
V(i) are expected to be similar in shape, but shifted slightly
relative to each.

Comparison with Experimental Results and Conclusions

The experimental literature on cluster- or drop-size distribu-
tions in stirred suspensions is quite extensive. A large fraction
of this presents empirical and semi-empirical equations relat-
ing the characteristic drop diameter in the vessel to the
mixing conditions (given as Weber number or shear rate) and
to the dispersed phase volume fraction or holdup [ref. (5),
and references therein, (7), (11)«17)]. Whereas the above
studies are concerned mainly with steady-state conditions,
there are others which deal with temporal developments of
cluster size distributions in systems undergoing only break-
up,>® coagulation [ref. (18) and references therein], or both
at the same time [ref. (5) and some references therein].

We should note that some of the data mentioned above
were collected from open or continuous flow operations [eg.
ref. (5) and (7)], whereas our model is based on batch systems.
Comparison of the theory with data obtained from open
systems, however, is justifiable provided that the residence
timescales in these are much greater than the coalescence and
break-up timescales. In Godfrey et al.® and Ross et al.,” we
believe this criterion is satisfied to rightly enable us to
compare their data with our batch model.

Overall, upon comparing the model with experimental
data, we find that satisfactory agreement seems to exist
between the two. For example, the experiments of Sprow!®
and Godfrey et al.’ lead to the conclusion that dyy/d, ., is @
constant, independent of other system variables. This obser-
vation agrees well with this work’s prediction given by eqn
(26). Note that d;, ~ «, as was found earlier. Table 2 pro-
vides the numerical constants of dy,/d_,, derived from the
present work and the experimental results of Sprow'® and
Godfrey et al.®

Interestingly, considering that Sprow’s analysis assumes
only break-up to occur (owing to the low dispersed phase
volume fractions used), the results seem to be in reasonable
agreement with our model. It is clear, however, that Sprow’s
distributions are wider than what our model predicts. In fact,
we realize that, in general, systems undergoing only break-up
yield distributions that are somewhat wider that the ones
given here [i.e. see ref. (17)].

Upon plotting the theoretical ratio d;,/d,;, [using eqn
(28)] in fig. 7, we find once again that our model compares
favourably with the experiments of Ross et al.” and Narsim-
han et al.® although the latter assumes that break-up domi-
nates over coalescence. The present theory, however,
overpredicts the ratio by a factor of ca. 1.25. We should
mention that N, was estimated using the relationship

6Vo

o 3
ndmin

(30)

where V is the total volume of the solution, and ¢ 1s the dis-
persed phase volume fraction. Furthermore, d,;, was taken to
be the smallest diameter available from the steady-state dis-

Table 2. Comparison of the values for the ratio d,,/d,,, obtained
from this work with related experiments

ref. ds3,/dax
this work 0.72
16 0.38
5 0.60

2137

c 30 T v T T T
€
3
oN
o
b -
9~ 25
=
o
oy
g 20t L 1
®© * . e *
- - * ® o
© .
s o
g 151 . 1
~
2
=
©
[75] 1.0 2 I 1 1 )
10° 107 10°

number of primary particles, N,
Fig. 7. Comparison of the theoretical and experimental Sauter mean
diameter ratio, dy,/d,,, vs. total number of primary particles, No.

Solid line is based on eqn (28) and the experimental points are taken
from ref. (6) (M) and (7) (@).

tribution data, and d,, was extracted from the volume-
fraction data of Narsimhan et al.® after considering that it
should approximately coincide with a cumulative volume
fraction of 0.50.

Finally, comparison of the theoretical cumulative number
fraction, n, taken arbitrarily at Ny = 107, with the experimen-
tal data of Godfrey et al.® is shown in fig. 8. The indication
here is that our model satisfactorily follows the trends of the
data. Moreover, the order-of-magnitude agreement is quite
good considering the absence of any adjustable parameters in
the model.

Some other qualitative agreements of the model with
experiments are that (i) the effects of the dispersed phase
volume fraction on the drop volume distribution seem to be
small,® and (ii) an increase in N o widens the size distribution

-or.2 curves and lowers their peaks{(e.g. compare-fig—4-with

the size distribution data of Ross et al.”).

Finally, upon focusing on the drawbacks of the proposed
model, we note that many of the experimental works
described above furnish distribution curves that are typically
of the form shown in fig. 9 [i.e. see ref. (7) and (15)]. In con-
trast to our results depicted in fig. 4, we find that the model
underestimates the maximum achievable drop sizes. Conse-
quently, the experimental size distributions are somewhat
wider than the ones predicted here. This is also evident from

o

©
1%

o
o))

o
>~

0.2

cumulative number fraction, n

0 0.5 1.0 15 20

reduced drop diameter, d/d,,

Fig. 8. Comparison of the theoretical and experimental cumulative
number fraction, n, vs. reduced diameter ratio, d/d,, . Solid line is for
an arbitrary N, = 107 and the experimental points are taken from
ref. (5).
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Fig. 9. Typical experimental curve showing size distribution, 2, vs.
drop diameter, d.

table 2. At this time, we shall avoid any conclusive explana-
tion for this discrepancy; however, we can only speculate that
this may be due to our formulating the original problem in
terms of discrete and distinguishable primary particles.
Although this formulation appears to be sound for coagu-
lation of solid particles, it may fail to apply to coalescence of
liquid droplet simply because the break-up following the
colescence of two primary liquid droplets, identified as 1 and
2, may produce another pair of primary droplets which,
although similar in size to the former ones, do not necessarily
contain exactly the same material as the primary droplets, 1
and 2. Consideration of this factor would require a modifi-
cation to the combinatoric relationship given by eqn (1).

In summary, we have proposed a simple model for obtain-
ing the steady-state size distributions of agglomerates in
stirred suspensions. Based on the assumption that surface
interactions and energy-state effects are totally overwhelmed
by the intense agitation, the model therefore relies only on
combinatorics to predict results which happen to agree
within reasonable bounds with the experimental data
obtained from literature. Furthermore, the advantage of the
present model over previous models is that it requires no
adjustable or empirical parameters for data fitting,

Glossary

d drop diameter

4 drop diameter at maximum value of Z [eqn (20)]
d maximum drop diameter [eqn (24)]

diameter of primary droplets (minimum diameter)
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i cluster size

‘ cluster size at maximum value of 2 [eqn (19)]

i.., maximum cluster size in the system [eqn (23)]

kg Boltzmann constant

n(i) cumulative number fraction [eqn (29b)]

A most probable total number of clusters in the system

A, most probable number of clusters of size i in the
system [eqn (7)]

N; number of clusters of size i in the system

N, total number of primary particles in the system

P most probable size distribution function or number
density [eqn (16)]

P size distribution function or number density [eqn (13)]

v cumulative volume fraction [eqn (29a)]

W  weight distribution function [eqn (14)]

%  most probable weight distribution function [eqn (17)]

VA distribution characteristic [eqn (12)]

Q degeneracy [eqn (1)]
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