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The Optimal Capital Structure
of Depository Institutions1,2

One should recognise that, in contrast to a corporate firm, there is an
underlying problem in assessing the capital structure of a bank. This
problem rests mainly on the lack of clarity on how one could define, let
alone determine, the location of the optimal. The reason for this is root-
ed in the differences in the ways the two types of organisations operate.
For instance, while a corporate firm generates income from rendering
services and/or selling manufactured products, a simple bank brings in
revenues by lending its assets. To further complicate things, the type of
borrower also plays a vital role, particularly when regulatory capital con-
straints are enforced on the lender. 

It is, therefore, not hard to imagine that for a variety of reasons—
namely (1) the fundamental discrepancies between how banks and corpo-
rate firms operate and (2) with risk and value management come complex
interactions between the lender and borrower (Mason, 1995)—the task of
determining the optimal capital structure of a bank, as opposed to that
of a corporate firm, is far from trivial. With this in mind, we intend here
to add some insight into this process, albeit in a simplistic manner, as we
try to (1) describe the mechanics that intertwine a lender and a borrower

1 Introduction
The impact of regulations on depository institutions4 [hereafter also
referred to as lending institutions, lenders or banks] has turned capital
structuring into an important area of concern and interest. Here as well, as
in the case of corporate firms, the attention revolves around trying to iden-
tify the optimal capital structure, as this, presumably, enables the organi-
sation to operate more efficiently. Unlike corporate firms, however, where
the Modigliani-Miller [M&M] theorems have clear-cut consequences, apply-
ing capital structuring to banks is more subjective. The reason for this is
that here capital structuring relies heavily on risk management and value
creation, two factors that are tightly entwined, owing to the nature of the
business [Schroeck (2002) and Fabozzi (1999), among many others].

There is also no need to mention that the amount of literature cover-
ing this area is considerable and, thus, any effort to undermine even a
fraction of it would take the attention away from our objectives. Never
the less, it would be helpful to address some of the relevant, but impor-
tant, issues as we go along. 
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We derive here a fundamental model for the capital structure of depository institutions. The derivation centres on the basic Modigliani-Miller methodology, but instead of using
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and (2) establish a logical framework for defining the optimal capital
structure of a lending institution.

Our approach to the above will be as follows. We start with an
overview of the application of the M&M ideology to a corporate, hoping
to shed light on some of the key elements that differentiate between
such an organisation and a lending institution. In due course, we
demonstrate how these features emanate from the differences in the
“fundamental constants,’’ as well as the levered and unlevered betas,
which typify the two types of establishments. Next, we explain the basic
role of regulatory capital, as this tends to play a significant part in the
operation of banks. We then go on to discuss the impact of the risk of
default on both, the lender and the borrower, which, subsequently,
leads to four unique scenarios. These scenarios should, hopefully, help
elucidate the notion of an optimal capital structure for depository insti-
tutions. And last, but not least, we describe how one could implement
such a concept in practice.

2 Application of the M&M
Methodology to a Corporate Firm
Although the basic M&M theory for corporate firms is well known and
presents itself in almost every text that covers the fundamentals of cor-
porate finance [see, for instance, Brealey and Myers (1996) or Ross et al
(1998)], we have decided to re-derive it here since much of the work that
lies ahead will, in one way or another, be related to it. For convenience,
our derivation at this stage is kept rudimentary, based on the assumption
of no default risk, and will be illustrated step by step via the simplified
financial statement displayed in Figure 1.5

Prior to plunging into the equations, it might be worthwhile to add a
few words on the fundamentals that underlie M&M’s capital structuring.
These fundamentals consist of three propositions, dealing with the (i)
impact of tax on firm’s value, (ii) effect of leverage on the return on equi-
ty and (iii) irrelevance of dividends on shareholder value. The first two of
these, which are most pertinent to this work, will, essentially, fall out as
we progress with the derivation.

In reference to Figure 1, which relates to a corporate firm, the EBIT 6,
eb , may be expressed in terms of the return on equity, RE , and cost of
“risk-less” debt7, R∗

D ,as

eb(1 − T) = REE + R∗
DD∗(1 − T) (2.1)

where E, D∗ and T, respectively, are the equity, risk-less debt and tax
rate. In this case, therefore, RE is equal to the net profit, 9, divided by
the equity, 50, resulting in 18%. An important feature that sets apart a
typical corporate firm from a lending institution is that the EBIT of the
former, which is an operating income, remains theoretically constant,
independent of T, E and D∗ .

Next, on defining Ru as the cost of operating the unlevered firm,
which should stay invariable, and Vu as the value of the unlevered firm,
we obtain:8

Vu = eb(1 − T)

Ru
≡ REE

RE
+ R∗

DD∗(1 − T)

R∗
D

= E + D∗(1 − T) (2.2)

after imposing the M&M ideology on Vu; e.g. Vu is the sum of the present val-
ues of the net profit, REE, and the after-tax interest payment, R∗

DD∗(1 − T).9

Therefore, with eb and Ru constant, the unlevered value of the firm, Vu,
remains constant as well, and so does the quantity E + D∗(1 − T). In fact,
the quantity E + D∗(1 − T) represents the fundamental constant from
which the levered value of the firm may be computed.10

Having established the above, one could now argue that the differ-
ence between the levered value of the firm, VL , which is simply E + D∗ ,
and its unlevered counterpart, Vu , denoted by Equation 2.2, is the value
added to the firm by the interest tax shield. This amounts to the product
D∗T, which works out to be 40 in the case of Figure 1. It, thus, follows that
as debt increases, the value of the corporate firm increases as well, albeit
in the linear fashion illustrated in Figure 2, with the slope of the line
equal to the tax rate, T. This, effectively, proves M&M’s first proposition,
concerning the impact of tax on firm’s value.

An extension of the above leads to the effect of leverage on the return on
equity, RE. Going back to Equations 2.1 and 2.2 and combining, we obtain

RE = Ru + (Ru − R∗
D)(1 − T)φ∗ (2.3)

where φ∗ is the [risk-less] leverage defined as

φ∗ ≡ D∗

E
(2.4) ^

TECHNICAL ARTICLE 1

EBIT 20
Interest (at 5%) -5
EBT 15
Tax (at 40%) -6
Net Profit 9

Total Assets 150
Debt 100
Equity 50
Debt + Equity 150

Leverage, D/E 2
ROE, Net Profit/Equity 18%

Balance Sheet

Income Statement

Ratios

Figure 1: A simplified finan-
cial statement, where the bal-
ance sheet is limited to debt
and equity. We have assumed
a cost of debt of 5% and a tax
rate of 40%
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Based on Figure 1, therefore, with Ru equal to 10.9% [see Footnote 9] and R∗
D

and T equal to 5% and 40%, respectively, we arrive at Figure 3, which dis-
plays the behaviour of RE as a function of φ∗. The relationship is again lin-
ear, as in Figure 2, stemming from the assumption that the firm is free from
the risk of default. This, essentially, constitutes M&M’s second proposition,
relating the return on equity to tax and leverage. With the above in mind,
we are now in a position to apply the same technique to a depository insti-
tution and, hence, derive relationships analogous to Equations 2.1–2.3.

3 Application to a Depository
Institution
We have so far demonstrated the famous M&M’s treatment of a corpo-
rate’s capital structure. The important feature here is the “fundamental

constant,” which, in this case, turns out to be the firm’s unlevered value,
Vu , represented by Equation 2.2. In practice, this is used to extract the
value of the firm as it varies its level of debt or leverage.

It should be emphasised once more that derivation of 2.2 involves an
environment that is free from the risk of default. This is portrayed by a
cost of debt that remains constant, equal to R∗

D , and independent of lever-
age. The asterisk on RD signifies this restriction. Thus, removing this con-
straint and incorporating the effects of default risk and credit spread
should, not surprisingly, complicate the methodology for determining
Vu , although it still remains tractable [see, for example, Cohen (2000b) for
the approach].

In the sections that follow, we utilise a similar approach to develop
the fundamental constant that, this time, relates instead to a depository
institution. Ideally, such an establishment would obtain funds at low
rates from deposits, as well as from government and/or interbank loans,
and lend them, together with its own equity, to another firm at a mar-
gin11. This margin turns out to be the main source of profit generation
for such an institution.

3.1 The use of the M&M principle to derive 
the fundamental constant for a depository 
institution
An approach similar to the above shall now be taken to derive the funda-
mental constant for an institution that earns its revenues from lending
its assets. For illustration, we will, once again, refer to a basic financial
statement. Simplification is needed here in order to shed light on the
fundamentals that underlie capital structuring and its optimisation.
Without properly understanding these, it is practically useless to chase
after more complicated cases.

Let us now begin with the usual assumption that the rates of lending
and borrowing are independent of leverage, as it is typically done under
the classical M&M approach. We denote these rates [or costs] by R∗

T and R∗
D,

respectively, the former being the rate that the lender charges the borrow-
er and the latter the rate the lender is charged to service its own debt12.
More realistically, RT and RD would vary with certain parameters, as the
risk of default and credit rating get affected. We shall touch on this shortly.

In view of the above, we re-apply Equation 2.1 to the lender and
obtain:

R∗
T (E + D∗)(1 − T) = REE + R∗

DD∗(1 − T) (3.1)

where, this time, we have equated the operating income, eb , to the net
revenues13 generated from lending the assets, E + D∗ , at the rate of R∗

T , i.e.

eb = R∗
T (E + D∗) (3.2)

A simple illustration of this, depicting the effects of a change in debt and
equity on leverage and return on equity, is displayed in Figures 4a–b. As
mentioned earlier, Equation 3.2 constitutes one of the crucial elements that
distinguish between how corporate firms and banks derive their revenues.
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Figure 2: The impact of debt, D, on the levered value of the cor-
porate firm. The slope of the curve is the tax rate, T, and the
intercept is the unlevered value of the firm, which is 110, based
on Equation 2.2 and using the financial statement in Figure 1
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Next, in order to get the fundamental constant characterising a
depository institution, we follow exactly the same procedure as before in
going from Equations 2.1 to 2.2—that is, introduce a constant discount
rate, α,such that it satisfies the following relationship:

R∗
T (E + D∗)(1 − T)

α
≡ REE

RE
+ R∗

DD∗(1 − T)

R∗
D

= E + D∗(1 − T)

(3.3)

where the left-hand side is set equal to the individual present values of
REE and R∗

DD∗(1 − T)—i.e. E and D∗(1 − T)—respectively. On dividing both
sides of 3.3 by E + D∗ and implementing 2.4, we obtain:

R∗
T (1 − T)

α
= 1 + φ∗(1 − T)

1 + φ∗ (3.4)

With each of the parameters on the left-hand side of 3.4,14 namely, R∗
T , T

and α, held constant, it should, therefore, only be the case that 

φ∗ = constant (3.5)

which, hence, constitutes the fundamental constant relating to a deposi-
tory institution. Consequently, just as a corporate firm should follow the
path E + D∗(1 − T) as its characteristic constant, a lending establishment
should instead move along φ∗ ≡ D∗/E = constant t.15 To demonstrate, if
the lender’s financial statement were represented by Figure 4b, which has
a leverage of 3, then an increase of 300 in debt, taking it to 450, would
necessitate an additional equity issuance of 100 if the lender were to main-
tain the same leverage ratio, φ∗, of 3. Thus, as the bank progresses along
its characteristic constant in the process of raising its debt from 150 to

450, its overall value should rise by 400, owing to the additional 100 in
new equity it has to issue. This contrasts sharply to a corporate’s capital
structure, where, according to M&M, a firm that proceeds along its char-
acteristic constant as it changes its capital structure, is able to buy back a
portion of its equity as it takes on additional debt (Cohen, 2001a).

Let us now generalise the above. Since the value of the levered bank,
VL, is E + D∗ , we obtain 

VL =
(

1 + 1

φ∗

)
D∗ (3.6)

upon utilising 2.4. This, in association with 3.5, implies that the value of
a risk-less lender increases linearly as it takes on more debt, just as a cor-
porate’s levered value does, but here it happens at a rate of (1 + 1/φ∗) as
opposed to the tax rate, T. A consequence of this is that the interest-tax
shield is not an effective way for adding value when lending assets is the
sole source of revenue generation.

The above enables us now to develop the relationship between the
return on equity, RE , and leverage, φ∗ , for a lending institution. We revert
to 3.1, which, in association with 2.4, yield

RE = R∗
T (1 − T) + (R∗

T − R∗
D)(1 − T)φ∗ (3.7)

after re-arrangement. This resembles Equation 2.3 in that both are linear
in φ∗ . The main difference, notwithstanding, is the presence of the lend-
ing rate, R∗

T , instead of Ru , the latter applying to a corporate firm. 
In light of the above, we try next evaluating the impacts of risks and

credit spreads of both, lender and borrower, on the return on equity.
However, it would be more appropriate to derive first the relationship
between the levered and unlevered betas, as it relates to a depository
institution, and compare it with its corporate counterpart.

3.2 The relationship between the levered 
and unlevered betas of a depository institution
Just as a corporate firm’s beta varies with leverage, a lending institution’s
should do so as well. Never the less, the disparities between the two betas,
the lender’s and the corporate firm’s, arise predominantly from the dif-
ferences between the fundamental constants. Let us illustrate. 

In terms of the return on equity, RE , the risk-free rate, which is
assumed here to be equal to R∗

D , and the market’s risk premium, RP , the
levered beta, βL , is generally defined as:

βL ≡ RE − R∗
D

RP
(3.8a)

and its unlevered counterpart, βu , as

βu ≡ RE(φ
∗ = 0) − R∗

D

RP
(3.8b)

where RE(φ
∗ = 0) denotes the return on equity evaluated at zero leverage,

i.e. letting φ∗ = 0 in Equation 3.7. We could now obtain the relationship

TECHNICAL ARTICLE 1

Operating Income (at 5% of assets) 7.5
Interest (at 4%) -4
EBT 3.5
Tax (at 40%) -1.4
Net Profit 2.1

Total Assets 150
Debt 100
Equity 50
Debt + Equity 150

Leverage, D/E 2
ROE, Net Profit/Equity 4%

Income Statement 

Balance Sheet 

Ratios

Operating Income (at 5% of assets) 10
Interest paid (at 4%) -6
EBT 4
Tax (at 40%) -1.6
Net Profit 2.4

Total Assets 200
Debt 150
Equity 50
Debt + Equity 200

Leverage, D/E 3
ROE, Net Profit/Equity 5%

Income Statement 

Balance Sheet 

Ratios

(a) (b)

Figure 4: A simplistic financial statement for a lending institution. Here, the
operating income comes from lending assets [D+E ] at some rate, R

T
, while

interest is paid on debt, D, at rate R
D
—in this case 5% and 4%, respectively. In

Figure 4a, the debt is 100, whereas in Figure 4b, it is 150. The dependence of
the operating income on asset size and/or leverage is what distinguishes the
above from a corporate’s financial statement, where, in theory, the latter’s
operating income [EBIT] remains constant, independent of leverage
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between βL and βufor a depository institution by eliminating RP from
3.8a and 3.8b and substituting Equation 3.7 for RE . The result is:

βL = βu

[
1 +

(
R∗

T − R∗
D

R∗
T (1 − T) − R∗

D

)
φ∗(1 − T)

]
(3.9)

which resembles that of a corporate firm’s16, except for the appearance
of an extra term containing the margin between R∗

T and R∗
D . It is interest-

ing to note here that unlike for a corporate firm, where the levered beta
is always an increasing function of leverage, a depository institution’s
levered beta could very well decrease with leverage, especially if the tax
rate, T, is high enough to render R∗

T (1 − T) − R∗
D < 0.17

Our discussions so far have centred on risk-less cases, where, essen-
tially, the rates of lending and borrowing are held constant. Evidently,
this is far from reality, as every organisation, be it corporate or finan-
cial, is vulnerable to defaulting on its debts. It, therefore, becomes nec-
essary to generalise our analysis by including the effects of default as
well. Prior to doing so, however, we need to introduce the role of regu-
latory capital restrictions, as all modern depository institutions are
subject to them, and then incorporate the classical M&M methodology.
This is carried out next.

4 The Regulatory Capital Restrictions
As a depository institution borrows and lends, it would very likely be sub-
ject to some tight government controls. These controls are known as regu-
latory capital and, basically, they require the establishment to maintain
bounds on some of its ratios, most importantly the Tier 1 and Tier 2. There
are, indeed, a number of other restrictions that apply as well (Berger et al,
1995), but we shall focus only on the Tier 1, as it happens to be, arguably,
one of the most, if not the most, critical (Schmittmann et al, 1996).

The definition of the Tier 1 ratio, T1, depends on interpretation. In
this work, we shall keep it as plain as possible and simply define it as:

T1 ≡ E

RWA
(4.1)

where E is the lender’s equity and RWA is its total “risk-weighted assets”.
The idea here is that the lender must have sufficient equity to cover its
losses in case the borrower defaults.

The next important issue involves determination of RWA. In simple
terms, RWA is equal to the amount of loan exposure the institution has
to its borrowers, multiplied by their individual “risk weight”. Roughly
speaking, therefore, if we were to consider a single borrower with a risk
weight of r and that the lender is lending all its assets, D + E, to that sin-
gle borrower, then the Tier 1 ratio would be

T1 = E

r(E + D)
= 1

r(1 + φ)
(4.2)

where φ is the leverage.
Needless to say, different types of borrowers carry different risk

weights. To get these, there are a variety of approaches available. These
consist of either placing the borrower into certain categories, such as “sov-
ereign,” “bank” or “corporate,” where the respective risk weight could be
determined according to Table 118, or taking the more tenuous, but com-
prehensive, route to computing it given two parameters, namely, the prob-
ability of default after one year, PD , and recovery ratio, RR ,19 of the borrow-
er. This relationship20 is expressed by (Ischenko and Samuels, 2001):

r = min

[
(1 − RR)

50
× 976.5 × N(1.043 × G(PD) + 0.766)

×
(

1 + 0.0470(1 − PD)

P0.44
D

)
, 12.5(1 − RR)

] (4.3)

whose behaviour is illustrated in Figure 5
as r versus PD for variable RR . Here, PD is
limited to a minimum of 0.03%, N(∗) is
the normal cumulative distribution and
G(∗) the inverse of the normal cumulative
distribution, with mean 0 and standard
deviation of 1. Consequently, given the
borrower’s PD and RR ,the risk weight could
be evaluated via Equation 4.3 [for a retail-
er], from which the risk-weighted assets,
RWA, and the Tier 1 ratio, T1, could ulti-
mately be computed. Clearly, therefore,
Equation 4.3 provides r in a more rigorous
and continuous manner and, hence, we
shall, from now on, follow this route
instead of the one outlined in Table 1, to
calculate the risk weights.

TABLE 1: RISK WEIGHTS UNDER THE “STANDARDIZED APPROACH.”
[REPRINTED, WITH PERMISSION, FROM ISCHENKO AND SAMUELS (2001)]



^

Wilmott magazine 43

5 The M&M Treatment: Accounting
for Risk and Spread
To account for the credit spread arising from the risk of default, we
generalise Equation 3.7 as

RE = RT(1 − T) + (RT − RD)(1 − T)φ (5.1)

where the removal of asterisks from RT , RD and φ reflects a risky envi-
ronment. Also, to proceed, we need to implement certain assumptions
on how RT and RD are affected by default risk. As these happen to be
separate issues, the former related to the borrower’s cost of debt and
the latter to the lender’s, we treat them independently in Sections 5.1a
and 5.1b.

5.1a The impact of default risk on the borrower’s
cost of debt, RT

The risk of default and, subsequently, credit spread of any borrower, bor-
rowing from a lending institution at rate RT , is generally characterised by
two parameters: the probability of default, PD , and the recovery ratio, RR ,
both of which have been defined earlier. If, in the interest of simplicity,
we limit both parameters to a one-year horizon and avoid the nonlineari-
ties that come with continuous compounding21, we could express the
risk-neutral relationship between R∗

T and RT as:

1 + R∗
T = (1 − PD)(1 + RT) + RRPD(1 + RT)

which can be re-arranged as

RT = R∗
T + (1 − RR)PD

1 − (1 − RR)PD
(5.2)

Note that the difference between RT and R∗
T is the credit spread of the bor-

rower, which remains positive as long as 0 ≤ PD, RR ≤ 1. Accordingly, also,
when either PD is zero or RR is unity, RT becomes identical to its risk-less
counterpart, R∗

T , an observation that is consistent with intuition.

5.1b The impact of default risk on the lender’s cost
of debt, RD

For a lending institution as well, the cost of debt depends on the proba-
bility of default and recovery ratio. The approximate governing relation-
ship between them is, in fact, identical to the one depicted in 5.2. 

The critical issue here, notwithstanding, is determination of PD and
RD . For this, a variety of credit models, such as Moody’s and S&P’s, are
available. These models, basically, encompass several factors and ratios
that are obtainable from the financial statement. Nevertheless, the com-
monality among all the different models is a strong dependence on
leverage (Constantinides et al, 2001), which appears also to present itself,
directly or indirectly, in Merton’s model (Merton, 1974).22 For this reason,
therefore, we shall assume here that the lenders credit spread, �, which
embodies the margin between the risky cost of debt, RD , and its risk-free
counterpart, R∗

D , is simply a function of the leverage, φ,i.e.

� = �(φ) (5.3a)

Furthermore, we shall assume, solely for the purposes of this work, that
this relationship is expressible by:

� =
(

φ

100

)2

(5.3b)

We should stress that Equation 5.3b, whose behaviour is plotted in
Figure 6, is purely hypothetical and being employed here in this form
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only for convenience—to enable us to carry on with the calculations that
follow hereafter.

5.1c Impact of the risk of default on the enterprise
value
It would now be useful to assess the major features that distinguish
between the enterprise values of a risk-less and risky lender. We should
recall that, in the case of corporate firms, these differences capture the
essence of the optimal capital structure, whereby as a risk-less firm’s
value is devoid of a maximum [optimum], the value of risky firm could
very well possess one (Cohen, 2001b).

In computing the risk-less and risky enterprise values of a depository
institution, which we denote here by V∗ and V , respectively, and define as

V∗ = D∗ + E (5.4a)
and

V = D + E (5.4b)

we refer to Table 2, where the procedure is explained in some depth
beneath it. In the interest of space, we shall avoid going through the

details here and, instead, provide Figure 7, which illus-
trates the comparison between V∗ and V as a function of
debt, D. It is noted here, in particular, that, in contrast to
a corporate firm, the enterprise value, V, of a risky
lender does not show any tendency to acquire a maxi-
mum at a finite debt. The reason for this is that the
lender is maintaining a certain leverage as it moves
along its fundamental constant and, hence, in the
process of raising its debt, the leverage does not change.

The procedure needed to derive V∗ and V across dif-
ferent values of leverage is somewhat more complicated
and, hence, we have decided to omit it from here. The
final outcome, however, is summarised in Figure 8,
which is based on the “realistic-case” scenario outlined
in a following section [i.e. see Section 5.2d]. Once again,
we note the absence of a maximum in the enterprise
value in either of the cases, V and V∗ . This, therefore, jus-
tifies the need for another concept to define the optimal
capital structure of a depository institution.

5.2 Impact of variable R
T

and RD
on the return on equity, RE

The outcome of the preceding sections could now be cate-
gorised into four distinct scenarios. These are (i) an ideal
case, where both RT and RD remain constant, independent
of the lender’s leverage, (ii) a “semi-ideal” situation, with
variable RT and constant RD, (iii) another semi-ideal situa-
tion, in which RT remains constant, but RD varies and,

D (1) RD (2) D* (3) E (4) � (5) RD (6) V* (7) V (8)
10 4.72% 11.8 1.2 8.48 4.72% 13.0 11.2
30 4.72% 35.4 3.5 8.48 4.72% 38.9 33.5
50 4.72% 59.0 5.9 8.48 4.72% 64.9 55.9
70 4.72% 82.6 8.3 8.48 4.72% 90.8 78.3
90 4.72% 106.2 10.6 8.48 4.72% 116.8 100.6
110 4.72% 129.8 13.0 8.48 4.72% 142.7 123.0
130 4.72% 153.4 15.3 8.48 4.72% 168.7 145.3
150 4.72% 176.9 17.7 8.48 4.72% 194.6 167.7
170 4.72% 200.5 20.1 8.48 4.72% 220.6 190.1
190 4.72% 224.1 22.4 8.48 4.72% 246.5 212.4
210 4.72% 247.7 24.8 8.48 4.72% 272.5 234.8
230 4.72% 271.3 27.1 8.48 4.72% 298.5 257.1
250 4.72% 294.9 29.5 8.48 4.72% 324.4 279.5
270 4.72% 318.5 31.9 8.48 4.72% 350.4 301.9
290 4.72% 342.1 34.2 8.48 4.72% 376.3 324.2

(1) Risky debt, starting at 10 and raised at increments of 20.
(2) Risky cost of debt of the lender.  Value fed from Column 6.
(3) Risk less debt, calculated from Footnote 7.
(4) Equity, calculated from holding the risk less leverage, φ*, constant at 10. 
(5) Risky leverage calculated as D/E.
(6) Risky cost of debt of the lender calculated from Equation 5.3b, with RD* = 4%.
(7) Risk less enterprise value, calculated as V* = D* + E.
(8) Risky enterprise value, calculated as V = D + E.

TABLE 2: CALCULATING THE VALUE OF THE ENTERPRISE AS A
FUNCTION OF DEBT, WHILE HOLDING THE LEVERAGE CON-
STANT. THESE NUMBERS, WHICH ARE BASED ON φ* = 10 AND
R

D
* = 4%, UNDERLIE THE CURVES IN FIGURE 7
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Figure 7: Comparison of risk-less and risky enterprise values, V* and V,
respectively, as a function of risky debt, D, while maintaining the leverage,
which is the fundamental constant, uniform. The underlying numbers have
been generated from Table 2.
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finally, (iv) a realistic scenario, where both, RT and RD , vary accord-
ing to leverage. For convenience, the above cases, along with some
numerical values, are tabulated in Table 3 and by a demonstration next.

5.2a [Case i] The Ideal Case: Both RT and RD Constant
Evidently, the ideal-case scenario, in which both RT and RD remain con-
stant, happens to be also the simplest. Here, as in all the other cases,
Equation 5.1 is employed to obtain the impact of leverage, φ, on RE , as we
hold RT , RD , and T constant at 5%, 4% and 40%, respectively. The result of
this is displayed in Figure 9, where, as revealed earlier, we find that RE

increases linearly with φ.

5.2b [Case ii] The Semi-ideal Case: Variable R
T

and
Constant R

D

This case represents a risk-less lender, who carries a constant cost of debt,
i.e. R∗

D , lending to a risky borrower, whose borrowing rate, RT , varies with
its default probability and recovery ratio, PD and RR , respectively, all in
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Figure 8: Comparison of risk-less and risky enterprise values, V*
and V, respectively, as functions of risky debt, D, across variable
leverage. Note the absence of a maximum in the case of V, which
contrasts to the case of a risky corporate firm, where a maximum
defines the optimal capital structure

line with Equation 5.2. The two regimes, which present themselves in
Figure 9, are one of falling RE , occurring at lower values of leverage and
one of rising RE , happening at higher leverage.

The initial regime of declining RE evolves from the complex interac-
tions between PD , RR , φ and r, all coming from Equations 4.2 and 4.3
combined. Here, one observes that the variation in φ results from
changing the borrower’s risk weight, r, as per Equation 4.2 [upon hold-
ing the Tier 1 ratio constant at 8%], while the change in r, is brought on
by varying the borrower’s PD and RR . 

Therefore, at low values of φ, where the borrower’s risk weight is
high, the credit spread of the borrower becomes comparatively large.
This, thereby, translates into a high RT , which, consequently, raises the
level of RE in accordance with Equation 5.1. Likewise, upon increasing φ
in Figure 9, one should, again, expect a rise in RE , as reflected by
Equation 5.1.

Altogether, this situation approaches reality when the lender has a
tight safety net, such as the government, to absorb the risk. This, there-
fore, creates a strong tendency for the lender to operate at high leverage,
whereby the return on equity is maximised and, at the same time, the
risk on equity capital is minimised.

5.2c [Case iii] The Semi-ideal Case: Constant RT
and Variable RD

In this instance, the lender suffers from the risk of default as it levers up,
whereas the borrower remains risk-less and maintains a constant bor-
rowing rate throughout, equal to R∗

T . The lender’s credit spread, mean-
while, is represented here by the simple functional relation given by
Equations 5.3a–b. It should be emphasised that, although this relationship

TABLE 3: DESCRIPTION OF THE DIFFERENT CASES
UNDERLYING SECTIONS 5.2A-D AND FIGURE 9. IN
ALL CASES THE TAX RATE, T, AND THE TIER 1
RATIO, T1, WERE HELD CONSTANT AT 40% AND 8%,
RESPECTIVELY
Case RT RD

i Constant (at 5%) Constant (at 4%)

ii Constant (at 5%) Variable

iii Variable Constant (at 4%)

iv Variable Variable
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Figure 9: The return on equity, R
E

, plotted against leverage, φ, for the different cases
described in Sections 5.2a–d—i.e. Cases i-iv, respectively. These cases are tabulated
in Table 3
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is purely hypothetical and being employed here for reasons no other than
convenience and simplicity, its outcome should constitute a qualitative
representative of more complicated situations.

In view of the above and in reference to Figure 9, we observe that RE

first rises and then falls with leverage. This characteristic, therefore,
truly illustrates an “optimal capital structure” in the sense that a unique
balance between debt and equity does exist, leading to a maximum in the
return on equity. Note that this is different from a corporate firm’s opti-
mal capital structure, where one seeks to maximise the value of the firm
(Cohen, 2001b).

5.2d [Case iv] The realistic case: both RT
and RD variable
This final scenario, in which both RT and RD are variable, depending on
the leverage of both, the lender and the borrower, portrays the most real-
istic of all the ones considered so far. In fact, the outcome here is a result
of the complex interactions between lender and borrower, as depicted by
Equations 4.2–4.3 and 5.1–5.3.

In this instance, the risk weight on the loan made to the borrower23

determines the leverage that the lender must comply with in order to sat-
isfy the limit on the Tier 1 ratio. This leverage, on the other hand, would
impact the lender’s credit rating and, hence, its cost of debt. The above-
mentioned interaction, therefore, leads to the fourth curve in Figure 9,
where we note that the return on equity falls as leverage goes up. This
behaviour contrasts sharply with the initial scenario, where RE rises with
leverage. As a result of this directional change, the lending institution may
not find it suitable to operate at high values of leverage as it would have
favoured in the previous cases, i and ii.

We have, for interest, also included Figure 10, which portrays the
impact of the Tier 1 ratio on RE , centring on the realistic case outlined in
Figure 9. It is observed that, at least within the range of T1 considered
here, the above-mentioned reversal in behaviour pattern, going from
ideal to realistic, is present.

Another important point is the absence of the maximum return on
equity, RE . This basically suggests that, in realistic cases where both RT

and RD vary with leverage, looking for an optimal capital structure, at
least within the context of maximising RE , would be futile. It, thus, fol-
lows that for a depository institution, one must find alternative meas-
ures to define and pinpoint the optimal capital structure.

6 Determining the Optimal Capital
Structure for a Depository Institution
As concluded above, pinning down the optimal capital structure for a
depository institution is not so straightforward. The existence of such a
regime, however, may still be justified if we were to consider the following
argument. Suppose that a lender intends to lend funds to a very low-risk
borrower. At the same time, assume also that the lender is restricted to
maintain a Tier 1 ratio, T1, at no more than 8%. The combination, there-
fore, of the low-risk borrower, who has a risk weight, r, approaching zero,
and the upper constraint of 8% set on the lender’s T1, would entice the lat-
ter to raise its level of debt to as high a leverage as possible, i.e. φ → ∞, as
predicated by Equation 4.2. Acquiring such high leverage is, clearly, unac-
ceptable, as, not only the return on equity of the lender falls quickly to
negative domain [see Figure 8], but also the balance sheet becomes tar-
nished in the eyes of stakeholders24 and the credit rating is put at risk25.

The lender has another choice, nonetheless, which is
simply to maximise its return on equity. This, according to
the realistic scenario illustrated in Figures 9 and 10, occurs
at zero leverage, which means that the lender is risking
nothing else except its own equity. Thus, in case the borrow-
er defaults on his debt, the lender has all to lose. This, also, is
not practical.

So, what is the solution? A possibility is that the lender
should seek a borrower whose risk-weight profile is compati-
ble with the acceptable level of leverage the lender’s balance
sheet could assume, without arousing any suspicions from
both, the stakeholders and the rating agencies. It is, therefore,
this type of inter-dependence between the lender and the bor-
rower that leads to an optimal capital structure for a lending
institution, and our objective here is to quantify it.

6.1 A possible solution for the optimal 
capital structure
We refer once more to the realistic-case scenario in Figures 9
and 10, where, clearly, there does not appear to be a sensible,
clear-cut sign of a maximum in the return on equity.26 Hence,
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we must resort to a different type of rationale to sup-
port the notion of an optimal capital structure,
namely one that follows the argument in the preced-
ing section. To achieve this, we begin with the
assumption that the lender’s primary objective is to
deliver to its shareholders a positive return on equity.
Subsequent to Equation 5.1, therefore, we note that
this is achievable if and only if the margin between
RT and RD satisfies the following condition:

RT − RD ≥ 0 (6.1)

from which results similar to the ones in Figure 11
could be derived. Following along this line of reason-
ing, therefore, where the optimal capital structure is
being related to the interaction between the Tier 1
ratio and the above criterion, we propose next an alter-
native, but logical, framework for defining an optimal
capital structure for a simple depository institution.

6.2 Framework and result
An important by-product of Figure 11 is the impact of
the Tier 1 ratio, T1,on the point of leverage, φ, where
the margin RT − RD crosses the boundary from posi-

tive to negative. This leverage could be viewed as a
“threshold” invoked by the constraint on T1 . Hence, an
institution whose Tier 1 ratio is capped cannot surpass
a certain threshold leverage, since this leads to a break-
down of the criterion set by Equation 6.1. Moreover,
given that φ is related to the risk weight, r, via Equation
4.2, one could, subsequently, obtain a mapping of the
risk weights that a lending institution could undertake
safely in its portfolio of loan exposures.

Applying the above logic to Figure 11, therefore, leads
to the type of outcome illustrated in Figure 12, where, for
instance, a minimum limit of 8% enforced on the Tier 1
ratio, in addition to the observation that the quantity
RT − RD crosses the boundary at a φ of approximately 12%,
would impose a lower bound on the borrower’s risk
weight, limiting r to a minimum, i.e. rmin , of 96%. It thus
follows from this [constraint on the risk weight] that one
could establish, from either Table 1 or Figure 5, precisely
the type of firm, in terms of default probability and recov-
ery ratio, the bank should target as a potential borrower.

7 Summary and Conclusions
Application of capital structuring to depository institu-
tions was the focus of our attention here. Although the
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Figure 11: The impact of the Tier 1 ratio, TT1, on the spead R
T
– R

D
. The significance of this is that a

spread satisfying the criterion R
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– R

D
≥ 0 guarantees a positive return on equity [see Equation 5.1]
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Figure 12: The impact of the Tier 1 ratio, T1, on the minimum risk weight, r
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. The point

highlighted is of T1 = 8%, which corresponds to an r
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of 96%. Together with Equation 4.2,
therefore, this sets a maximum limit on the leverage, φ, at 12. This means that a lender with a
constrained Tier 1 ratio is restricted to a certain risk exposure and leverage if it were to main-
tain a positive return on equity. Finally, for sake of curiosity, the best-fit power-law curve is
also included, which, interestingly, has an R2 greater than 99.9%



48 Wilmott magazine

nature of the problem is, inarguably, complicated, we tried to simplify it
here, mainly to illustrate how the lender and borrower interact. In doing
so, we arrived at several conclusions, some of which are:

1. The basic M&M principles are applicable to depository institutions as
well, but only after accounting for the fundamental differences in how
lenders and corporates operate. It is demonstrated that, unlike the
application of M&M to a corporate firm, where one could pin point an
optimal capital structure in terms of the firm’s value, there does not
appear to be a clear-cut answer when it comes to a lending institution.
This, very simply, is due to the nature of the two businesses, namely in
the way their revenues are generated. Furthermore, regulations
imposed on capital can restrict the type of borrower the bank could
lend to. This interaction between the bank and the borrower signifi-
cantly complicates the matter.

2. The fundamental constant for a lending institution, as derived from
the M&M methodology, turns out to be the leverage. This contrasts
sharply to that of a corporate firm’s, for which the constant is the
unlevered value.

3. The relationship between the levered and unlevered betas of a lend-
ing institution also happens to be different from that of corporate
firm’s. The cause of this is, once again, the variations in way the two
types of establishments derive their revenues.

4. In comparison to a corporate firm, there appears to be no well-
defined notion of an optimal capital structure for a depository insti-
tution. There are two reasons for this. Firstly, if we were to consider
the value of the firm to be the determining factor, such an optimal
would be, for all intents and purposes, absent. As proof, we refer to
Figure 8, where the value, V, is plotted against leverage, φ . We
observe here that V is maximised at zero leverage, which is not a fea-
sible solution, owing to reasons stated earlier. 

Secondly, if we relied on maximising the return on equity to
define the optimal capital structure, we observe, once more, that
there is a lack of a practical optimum, particularly in Case iv of
Figure 9, which represents the realistic scenario with both, the
lender and borrower, vulnerable to default risk. As a result, there-
fore, the idea of defining an optimal capital structure for a deposito-
ry institution—one that is similar in concept to a corporate firm’s—
remains ambiguous and, hence, dependent on subjective inputs.

5. If we were to focus instead on the margin, RT − RD [and its relation to
maintaining a positive return on equity], as essential to supporting
the notion of an optimal capital structure, we arrive at the results in
Figures 11 and 12. These summarise the interactions between the
lender and borrower, which were described earlier, by highlighting
the connection between the capital regulation imposed on the
lender, in terms of Tier 1 ratio, and the risk exposure of the lender to
the borrower.

What we have accomplished so far, in our attempt to investigate the capital
structure of a simple lending institution, was merely “touch the tip of the

iceberg.” This, notwithstanding, was sufficient to verify that analysing the
capital structure of banks is, to say the least, very complicated. Never the
less, a simplistic approach, following along these lines could, possibly, pres-
ent a viable route to locating the optimal capital structure.

1. March 2003. Paper can be found in http://rdcohen.50megs.com/DepInstabstract.htm.

2. I express these views as an individual, not as a representative of companies with which I

am connected.

3. E-mail: ruben.cohen@citigroup.com—Phone: +44(0)207 986 4645.

4. A depository institution is a type of financial institution that, in its simplest form, bor-

rows funds from deposits and/or other establishments and lends them to borrowers. In

this process, revenue is created mainly from the margin between the rate of lending and

the cost of borrowing.

5. See, for instance, Cohen (2001a,b) for similar derivations of the M&M principles, with

and without the impact of credit spread.

6. EBIT stands for earnings before interest and tax.

7. By “risk-less” debt we mean the value of debt if the firm were fully immune to default

risk. In this case the cost of debt, RD, would be equal to a constant, independent of lever-

age. The relationship between D∗ and D is simply D∗ = RDD/R∗
D (Cohen, 2001b).

8. Vu and Ru remain constant under the assumption of no default risk and credit spread.

Equation 2.2 is, subsequently, not valid when these are present.

9. For the financial statement in Figure 1 , Vu is calculated as 110, which gives an Ru of

20 × (1 − 40%)/110 = 10.9%.

10. In computing the levered value from Vu, the method for dealing with risky and risk less

firms is different. See Cohen (2001a,b) for an illustration.

11. Lending could, in this case, be also achieved via the purchase of bonds.

12. The asterisk in RT and RD indicates that they are constant.

13. After other expenses, including SG&A, depreciation and amortisation.

14. The left-hand side of Equation 3.4 is, in fact, the weighted average cost of capital 

15. The significance of moving along this constant is that the enterprise value computed

from the income statement is guaranteed to be consistent with that calculated from the

balance sheet.

16. Recall that βL = βu [1+ (1-T)φ∗ ]for a corporate firm (Cohen, 2001b).

17. For instance, this could occur at high tax rates.

18. See also Page 151 in Schroeck (2002) for another display.

19. Many sources use the “loss given default,” or LGD, instead of the recovery ratio. The

relation between the two is LGD = 1 − RR .

20. Equation 4.3 is for “retail.” For “non-retail,” we use 1.118 and 1.288, respectively, in

place of 1.043 and 0.766.

21. The linearised form given here is a satisfactory approximation to the continuous com-

pounding alternative as long as RT << 1, which is generally the case.

22. Volatility is also an important element, however it shall be ignored here purely for sake

of simplicity.

23. Recall that the borrower’s risk weight depends on its default probability and recovery

ratio [see Equation 4.3].

24. Stakeholders constitute depositors, bondholders, shareholders and regulators

(Schroeck, 2002).

25. Recall from Section 5 that the default risk and, thus, the credit spread of the lender

depends on its leverage, among other factors. The significance of leverage on credit rating

is owed especially to interest rate risk [see, for instance, Fabozzi (1999) for a discussion].
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26. In theory, the optimal capital structure for this case, if we were to opt for maximum

return on equity, turns out to be at zero leverage, which, clearly, is not practical.
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